Spaces:
Running
Running
Create inference_img.py
Browse files- inference_img.py +120 -0
inference_img.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import cv2
|
3 |
+
import torch
|
4 |
+
import argparse
|
5 |
+
from torch.nn import functional as F
|
6 |
+
import warnings
|
7 |
+
|
8 |
+
OUTPUT_PATH = "/home/user/app/output/"
|
9 |
+
|
10 |
+
warnings.filterwarnings("ignore")
|
11 |
+
|
12 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
+
torch.set_grad_enabled(False)
|
14 |
+
if torch.cuda.is_available():
|
15 |
+
torch.backends.cudnn.enabled = True
|
16 |
+
torch.backends.cudnn.benchmark = True
|
17 |
+
|
18 |
+
parser = argparse.ArgumentParser(description='Interpolation for a pair of images')
|
19 |
+
parser.add_argument('--img', dest='img', nargs=2, required=True)
|
20 |
+
parser.add_argument('--exp', default=2, type=int)
|
21 |
+
parser.add_argument('--ratio', default=0, type=float, help='inference ratio between two images with 0 - 1 range')
|
22 |
+
parser.add_argument('--rthreshold', default=0.02, type=float, help='returns image when actual ratio falls in given range threshold')
|
23 |
+
parser.add_argument('--rmaxcycles', default=8, type=int, help='limit max number of bisectional cycles')
|
24 |
+
parser.add_argument('--model', dest='modelDir', type=str, default='train_log', help='directory with trained model files')
|
25 |
+
|
26 |
+
args = parser.parse_args()
|
27 |
+
|
28 |
+
try:
|
29 |
+
from train_log.RIFE_HDv3 import Model
|
30 |
+
model = Model()
|
31 |
+
model.load_model(args.modelDir, -1)
|
32 |
+
print("Loaded RIFE_HDv3 model.")
|
33 |
+
print("Checkpoint reached RIFE!")
|
34 |
+
except:
|
35 |
+
from train_log.IFNet_HDv3 import Model
|
36 |
+
model = Model()
|
37 |
+
model.load_model(args.modelDir, -1)
|
38 |
+
print("Loaded IFNet_HDv3 model.")
|
39 |
+
print("Checkpoint reached IFNet!")
|
40 |
+
|
41 |
+
model.eval()
|
42 |
+
model.device()
|
43 |
+
|
44 |
+
if args.img[0].endswith('.exr') and args.img[1].endswith('.exr'):
|
45 |
+
img0 = cv2.imread(args.img[0], cv2.IMREAD_COLOR | cv2.IMREAD_ANYDEPTH)
|
46 |
+
img1 = cv2.imread(args.img[1], cv2.IMREAD_COLOR | cv2.IMREAD_ANYDEPTH)
|
47 |
+
img0 = (torch.tensor(img0.transpose(2, 0, 1)).to(device)).unsqueeze(0)
|
48 |
+
img1 = (torch.tensor(img1.transpose(2, 0, 1)).to(device)).unsqueeze(0)
|
49 |
+
else:
|
50 |
+
img0 = cv2.imread(args.img[0], cv2.IMREAD_UNCHANGED)
|
51 |
+
img1 = cv2.imread(args.img[1], cv2.IMREAD_UNCHANGED)
|
52 |
+
img0 = (torch.tensor(img0.transpose(2, 0, 1)).to(device) / 255.).unsqueeze(0)
|
53 |
+
img1 = (torch.tensor(img1.transpose(2, 0, 1)).to(device) / 255.).unsqueeze(0)
|
54 |
+
|
55 |
+
n, c, h, w = img0.shape
|
56 |
+
ph = ((h - 1) // 32 + 1) * 32
|
57 |
+
pw = ((w - 1) // 32 + 1) * 32
|
58 |
+
padding = (0, pw - w, 0, ph - h)
|
59 |
+
img0 = F.pad(img0, padding)
|
60 |
+
img1 = F.pad(img1, padding)
|
61 |
+
|
62 |
+
if args.ratio:
|
63 |
+
img_list = [img0]
|
64 |
+
img0_ratio = 0.0
|
65 |
+
img1_ratio = 1.0
|
66 |
+
if args.ratio <= img0_ratio + args.rthreshold / 2:
|
67 |
+
middle = img0
|
68 |
+
elif args.ratio >= img1_ratio - args.rthreshold / 2:
|
69 |
+
middle = img1
|
70 |
+
else:
|
71 |
+
tmp_img0 = img0
|
72 |
+
tmp_img1 = img1
|
73 |
+
for inference_cycle in range(args.rmaxcycles):
|
74 |
+
middle = model.inference(tmp_img0, tmp_img1)
|
75 |
+
middle_ratio = (img0_ratio + img1_ratio) / 2
|
76 |
+
if args.ratio - (args.rthreshold / 2) <= middle_ratio <= args.ratio + (args.rthreshold / 2):
|
77 |
+
break
|
78 |
+
if args.ratio > middle_ratio:
|
79 |
+
tmp_img0 = middle
|
80 |
+
img0_ratio = middle_ratio
|
81 |
+
else:
|
82 |
+
tmp_img1 = middle
|
83 |
+
img1_ratio = middle_ratio
|
84 |
+
img_list.append(middle)
|
85 |
+
img_list.append(img1)
|
86 |
+
else:
|
87 |
+
img_list = [img0, img1]
|
88 |
+
for i in range(args.exp):
|
89 |
+
tmp = []
|
90 |
+
for j in range(len(img_list) - 1):
|
91 |
+
mid = model.inference(img_list[j], img_list[j + 1])
|
92 |
+
tmp.append(img_list[j])
|
93 |
+
tmp.append(mid)
|
94 |
+
tmp.append(img1)
|
95 |
+
img_list = tmp
|
96 |
+
|
97 |
+
if not os.path.exists('output'):
|
98 |
+
os.mkdir('output')
|
99 |
+
|
100 |
+
print("Checkpoint reached! output folder ok")
|
101 |
+
|
102 |
+
for i in range(len(img_list)):
|
103 |
+
filename_exr = os.path.join(OUTPUT_PATH, f"img{i}.exr")
|
104 |
+
filename_png = os.path.join(OUTPUT_PATH, f"img{i}.png")
|
105 |
+
|
106 |
+
if args.img[0].endswith('.exr') and args.img[1].endswith('.exr'):
|
107 |
+
cv2.imwrite(filename_exr, (img_list[i][0]).cpu().numpy().transpose(1, 2, 0)[:h, :w], [cv2.IMWRITE_EXR_TYPE, cv2.IMWRITE_EXR_TYPE_HALF])
|
108 |
+
|
109 |
+
success = cv2.imwrite(filename_png, (img_list[i][0] * 255).byte().cpu().numpy().transpose(1, 2, 0)[:h, :w])
|
110 |
+
print(f"Saving to {filename_png} → success: {success}")
|
111 |
+
print("Saving to:", os.path.abspath(filename_png))
|
112 |
+
|
113 |
+
else:
|
114 |
+
success = cv2.imwrite(filename_png, (img_list[i][0] * 255).byte().cpu().numpy().transpose(1, 2, 0)[:h, :w])
|
115 |
+
print(f"Saving to {filename_png} → success: {success}")
|
116 |
+
print("Saving to:", os.path.abspath(filename_png))
|
117 |
+
|
118 |
+
|
119 |
+
|
120 |
+
print("Checkpoint reached!")
|