AItool commited on
Commit
f056e15
·
verified ·
1 Parent(s): dfe2f93

Update inference_img.py

Browse files
Files changed (1) hide show
  1. inference_img.py +97 -96
inference_img.py CHANGED
@@ -7,113 +7,114 @@ import warnings
7
 
8
 
9
  def main():
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
 
11
- warnings.filterwarnings("ignore")
12
-
13
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
14
- torch.set_grad_enabled(False)
15
- if torch.cuda.is_available():
16
- torch.backends.cudnn.enabled = True
17
- torch.backends.cudnn.benchmark = True
18
-
19
- parser = argparse.ArgumentParser(description='Interpolation for a pair of images')
20
- parser.add_argument('--img', dest='img', nargs=2, required=True)
21
- parser.add_argument('--exp', default=4, type=int)
22
- parser.add_argument('--ratio', default=0, type=float, help='inference ratio between two images with 0 - 1 range')
23
- parser.add_argument('--rthreshold', default=0.02, type=float, help='returns image when actual ratio falls in given range threshold')
24
- parser.add_argument('--rmaxcycles', default=8, type=int, help='limit max number of bisectional cycles')
25
- parser.add_argument('--model', dest='modelDir', type=str, default='train_log', help='directory with trained model files')
26
-
27
- args = parser.parse_args()
28
-
29
- try:
30
  try:
31
  try:
32
- from model.RIFE_HDv2 import Model
33
- model = Model()
34
- model.load_model(args.modelDir, -1)
35
- print("Loaded v2.x HD model.")
 
 
 
 
 
 
36
  except:
37
- from train_log.RIFE_HDv3 import Model
38
  model = Model()
39
  model.load_model(args.modelDir, -1)
40
- print("Loaded v3.x HD model.")
41
  except:
42
- from model.RIFE_HD import Model
43
  model = Model()
44
  model.load_model(args.modelDir, -1)
45
- print("Loaded v1.x HD model")
46
- except:
47
- from model.RIFE import Model
48
- model = Model()
49
- model.load_model(args.modelDir, -1)
50
- print("Loaded ArXiv-RIFE model")
51
- model.eval()
52
- model.device()
53
-
54
- if args.img[0].endswith('.exr') and args.img[1].endswith('.exr'):
55
- img0 = cv2.imread(args.img[0], cv2.IMREAD_COLOR | cv2.IMREAD_ANYDEPTH)
56
- img1 = cv2.imread(args.img[1], cv2.IMREAD_COLOR | cv2.IMREAD_ANYDEPTH)
57
- img0 = (torch.tensor(img0.transpose(2, 0, 1)).to(device)).unsqueeze(0)
58
- img1 = (torch.tensor(img1.transpose(2, 0, 1)).to(device)).unsqueeze(0)
59
-
60
- else:
61
- img0 = cv2.imread(args.img[0], cv2.IMREAD_UNCHANGED)
62
- img1 = cv2.imread(args.img[1], cv2.IMREAD_UNCHANGED)
63
- img0 = (torch.tensor(img0.transpose(2, 0, 1)).to(device) / 255.).unsqueeze(0)
64
- img1 = (torch.tensor(img1.transpose(2, 0, 1)).to(device) / 255.).unsqueeze(0)
65
-
66
- n, c, h, w = img0.shape
67
- ph = ((h - 1) // 32 + 1) * 32
68
- pw = ((w - 1) // 32 + 1) * 32
69
- padding = (0, pw - w, 0, ph - h)
70
- img0 = F.pad(img0, padding)
71
- img1 = F.pad(img1, padding)
72
-
73
-
74
- if args.ratio:
75
- img_list = [img0]
76
- img0_ratio = 0.0
77
- img1_ratio = 1.0
78
- if args.ratio <= img0_ratio + args.rthreshold / 2:
79
- middle = img0
80
- elif args.ratio >= img1_ratio - args.rthreshold / 2:
81
- middle = img1
82
- else:
83
- tmp_img0 = img0
84
- tmp_img1 = img1
85
- for inference_cycle in range(args.rmaxcycles):
86
- middle = model.inference(tmp_img0, tmp_img1)
87
- middle_ratio = ( img0_ratio + img1_ratio ) / 2
88
- if args.ratio - (args.rthreshold / 2) <= middle_ratio <= args.ratio + (args.rthreshold / 2):
89
- break
90
- if args.ratio > middle_ratio:
91
- tmp_img0 = middle
92
- img0_ratio = middle_ratio
93
- else:
94
- tmp_img1 = middle
95
- img1_ratio = middle_ratio
96
- img_list.append(middle)
97
- img_list.append(img1)
98
- else:
99
- img_list = [img0, img1]
100
- for i in range(args.exp):
101
- tmp = []
102
- for j in range(len(img_list) - 1):
103
- mid = model.inference(img_list[j], img_list[j + 1])
104
- tmp.append(img_list[j])
105
- tmp.append(mid)
106
- tmp.append(img1)
107
- img_list = tmp
108
-
109
- if not os.path.exists('output'):
110
- os.mkdir('output')
111
- for i in range(len(img_list)):
112
  if args.img[0].endswith('.exr') and args.img[1].endswith('.exr'):
113
- cv2.imwrite('output/img{}.exr'.format(i), (img_list[i][0]).cpu().numpy().transpose(1, 2, 0)[:h, :w], [cv2.IMWRITE_EXR_TYPE, cv2.IMWRITE_EXR_TYPE_HALF])
 
 
 
 
114
  else:
115
- cv2.imwrite('output/img{}.png'.format(i), (img_list[i][0] * 255).byte().cpu().numpy().transpose(1, 2, 0)[:h, :w])
116
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
117
 
118
  if __name__ == "__main__":
119
  main()
 
7
 
8
 
9
  def main():
10
+
11
+ warnings.filterwarnings("ignore")
12
+
13
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
14
+ torch.set_grad_enabled(False)
15
+ if torch.cuda.is_available():
16
+ torch.backends.cudnn.enabled = True
17
+ torch.backends.cudnn.benchmark = True
18
+
19
+ parser = argparse.ArgumentParser(description='Interpolation for a pair of images')
20
+ parser.add_argument('--img', dest='img', nargs=2, required=True)
21
+ parser.add_argument('--exp', default=4, type=int, required=True)
22
+ parser.add_argument('--ratio', default=0, type=float, help='inference ratio between two images with 0 - 1 range')
23
+ parser.add_argument('--rthreshold', default=0.02, type=float, help='returns image when actual ratio falls in given range threshold')
24
+ parser.add_argument('--rmaxcycles', default=8, type=int, help='limit max number of bisectional cycles')
25
+ parser.add_argument('--model', dest='modelDir', type=str, default='train_log', help='directory with trained model files')
26
+
27
+ args = parser.parse_args()
28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
  try:
30
  try:
31
+ try:
32
+ from model.RIFE_HDv2 import Model
33
+ model = Model()
34
+ model.load_model(args.modelDir, -1)
35
+ print("Loaded v2.x HD model.")
36
+ except:
37
+ from train_log.RIFE_HDv3 import Model
38
+ model = Model()
39
+ model.load_model(args.modelDir, -1)
40
+ print("Loaded v3.x HD model.")
41
  except:
42
+ from model.RIFE_HD import Model
43
  model = Model()
44
  model.load_model(args.modelDir, -1)
45
+ print("Loaded v1.x HD model")
46
  except:
47
+ from model.RIFE import Model
48
  model = Model()
49
  model.load_model(args.modelDir, -1)
50
+ print("Loaded ArXiv-RIFE model")
51
+ model.eval()
52
+ model.device()
53
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54
  if args.img[0].endswith('.exr') and args.img[1].endswith('.exr'):
55
+ img0 = cv2.imread(args.img[0], cv2.IMREAD_COLOR | cv2.IMREAD_ANYDEPTH)
56
+ img1 = cv2.imread(args.img[1], cv2.IMREAD_COLOR | cv2.IMREAD_ANYDEPTH)
57
+ img0 = (torch.tensor(img0.transpose(2, 0, 1)).to(device)).unsqueeze(0)
58
+ img1 = (torch.tensor(img1.transpose(2, 0, 1)).to(device)).unsqueeze(0)
59
+
60
  else:
61
+ img0 = cv2.imread(args.img[0], cv2.IMREAD_UNCHANGED)
62
+ img1 = cv2.imread(args.img[1], cv2.IMREAD_UNCHANGED)
63
+ img0 = (torch.tensor(img0.transpose(2, 0, 1)).to(device) / 255.).unsqueeze(0)
64
+ img1 = (torch.tensor(img1.transpose(2, 0, 1)).to(device) / 255.).unsqueeze(0)
65
+
66
+ n, c, h, w = img0.shape
67
+ ph = ((h - 1) // 32 + 1) * 32
68
+ pw = ((w - 1) // 32 + 1) * 32
69
+ padding = (0, pw - w, 0, ph - h)
70
+ img0 = F.pad(img0, padding)
71
+ img1 = F.pad(img1, padding)
72
+
73
+
74
+ if args.ratio:
75
+ img_list = [img0]
76
+ img0_ratio = 0.0
77
+ img1_ratio = 1.0
78
+ if args.ratio <= img0_ratio + args.rthreshold / 2:
79
+ middle = img0
80
+ elif args.ratio >= img1_ratio - args.rthreshold / 2:
81
+ middle = img1
82
+ else:
83
+ tmp_img0 = img0
84
+ tmp_img1 = img1
85
+ for inference_cycle in range(args.rmaxcycles):
86
+ middle = model.inference(tmp_img0, tmp_img1)
87
+ middle_ratio = ( img0_ratio + img1_ratio ) / 2
88
+ if args.ratio - (args.rthreshold / 2) <= middle_ratio <= args.ratio + (args.rthreshold / 2):
89
+ break
90
+ if args.ratio > middle_ratio:
91
+ tmp_img0 = middle
92
+ img0_ratio = middle_ratio
93
+ else:
94
+ tmp_img1 = middle
95
+ img1_ratio = middle_ratio
96
+ img_list.append(middle)
97
+ img_list.append(img1)
98
+ else:
99
+ img_list = [img0, img1]
100
+ for i in range(args.exp):
101
+ tmp = []
102
+ for j in range(len(img_list) - 1):
103
+ mid = model.inference(img_list[j], img_list[j + 1])
104
+ tmp.append(img_list[j])
105
+ tmp.append(mid)
106
+ tmp.append(img1)
107
+ img_list = tmp
108
+
109
+ if not os.path.exists('output'):
110
+ os.mkdir('output')
111
+ for i in range(len(img_list)):
112
+ if args.img[0].endswith('.exr') and args.img[1].endswith('.exr'):
113
+ cv2.imwrite('output/img{}.exr'.format(i), (img_list[i][0]).cpu().numpy().transpose(1, 2, 0)[:h, :w], [cv2.IMWRITE_EXR_TYPE, cv2.IMWRITE_EXR_TYPE_HALF])
114
+ else:
115
+ cv2.imwrite('output/img{}.png'.format(i), (img_list[i][0] * 255).byte().cpu().numpy().transpose(1, 2, 0)[:h, :w])
116
+
117
+ cmd_inference_img(args.img,args.exp,args.model)
118
 
119
  if __name__ == "__main__":
120
  main()