Spaces:
Running
Running
Update inference_img.py
Browse files- inference_img.py +97 -96
inference_img.py
CHANGED
@@ -7,113 +7,114 @@ import warnings
|
|
7 |
|
8 |
|
9 |
def main():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
warnings.filterwarnings("ignore")
|
12 |
-
|
13 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
14 |
-
torch.set_grad_enabled(False)
|
15 |
-
if torch.cuda.is_available():
|
16 |
-
torch.backends.cudnn.enabled = True
|
17 |
-
torch.backends.cudnn.benchmark = True
|
18 |
-
|
19 |
-
parser = argparse.ArgumentParser(description='Interpolation for a pair of images')
|
20 |
-
parser.add_argument('--img', dest='img', nargs=2, required=True)
|
21 |
-
parser.add_argument('--exp', default=4, type=int)
|
22 |
-
parser.add_argument('--ratio', default=0, type=float, help='inference ratio between two images with 0 - 1 range')
|
23 |
-
parser.add_argument('--rthreshold', default=0.02, type=float, help='returns image when actual ratio falls in given range threshold')
|
24 |
-
parser.add_argument('--rmaxcycles', default=8, type=int, help='limit max number of bisectional cycles')
|
25 |
-
parser.add_argument('--model', dest='modelDir', type=str, default='train_log', help='directory with trained model files')
|
26 |
-
|
27 |
-
args = parser.parse_args()
|
28 |
-
|
29 |
-
try:
|
30 |
try:
|
31 |
try:
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
except:
|
37 |
-
from
|
38 |
model = Model()
|
39 |
model.load_model(args.modelDir, -1)
|
40 |
-
print("Loaded
|
41 |
except:
|
42 |
-
from model.
|
43 |
model = Model()
|
44 |
model.load_model(args.modelDir, -1)
|
45 |
-
print("Loaded
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
model.load_model(args.modelDir, -1)
|
50 |
-
print("Loaded ArXiv-RIFE model")
|
51 |
-
model.eval()
|
52 |
-
model.device()
|
53 |
-
|
54 |
-
if args.img[0].endswith('.exr') and args.img[1].endswith('.exr'):
|
55 |
-
img0 = cv2.imread(args.img[0], cv2.IMREAD_COLOR | cv2.IMREAD_ANYDEPTH)
|
56 |
-
img1 = cv2.imread(args.img[1], cv2.IMREAD_COLOR | cv2.IMREAD_ANYDEPTH)
|
57 |
-
img0 = (torch.tensor(img0.transpose(2, 0, 1)).to(device)).unsqueeze(0)
|
58 |
-
img1 = (torch.tensor(img1.transpose(2, 0, 1)).to(device)).unsqueeze(0)
|
59 |
-
|
60 |
-
else:
|
61 |
-
img0 = cv2.imread(args.img[0], cv2.IMREAD_UNCHANGED)
|
62 |
-
img1 = cv2.imread(args.img[1], cv2.IMREAD_UNCHANGED)
|
63 |
-
img0 = (torch.tensor(img0.transpose(2, 0, 1)).to(device) / 255.).unsqueeze(0)
|
64 |
-
img1 = (torch.tensor(img1.transpose(2, 0, 1)).to(device) / 255.).unsqueeze(0)
|
65 |
-
|
66 |
-
n, c, h, w = img0.shape
|
67 |
-
ph = ((h - 1) // 32 + 1) * 32
|
68 |
-
pw = ((w - 1) // 32 + 1) * 32
|
69 |
-
padding = (0, pw - w, 0, ph - h)
|
70 |
-
img0 = F.pad(img0, padding)
|
71 |
-
img1 = F.pad(img1, padding)
|
72 |
-
|
73 |
-
|
74 |
-
if args.ratio:
|
75 |
-
img_list = [img0]
|
76 |
-
img0_ratio = 0.0
|
77 |
-
img1_ratio = 1.0
|
78 |
-
if args.ratio <= img0_ratio + args.rthreshold / 2:
|
79 |
-
middle = img0
|
80 |
-
elif args.ratio >= img1_ratio - args.rthreshold / 2:
|
81 |
-
middle = img1
|
82 |
-
else:
|
83 |
-
tmp_img0 = img0
|
84 |
-
tmp_img1 = img1
|
85 |
-
for inference_cycle in range(args.rmaxcycles):
|
86 |
-
middle = model.inference(tmp_img0, tmp_img1)
|
87 |
-
middle_ratio = ( img0_ratio + img1_ratio ) / 2
|
88 |
-
if args.ratio - (args.rthreshold / 2) <= middle_ratio <= args.ratio + (args.rthreshold / 2):
|
89 |
-
break
|
90 |
-
if args.ratio > middle_ratio:
|
91 |
-
tmp_img0 = middle
|
92 |
-
img0_ratio = middle_ratio
|
93 |
-
else:
|
94 |
-
tmp_img1 = middle
|
95 |
-
img1_ratio = middle_ratio
|
96 |
-
img_list.append(middle)
|
97 |
-
img_list.append(img1)
|
98 |
-
else:
|
99 |
-
img_list = [img0, img1]
|
100 |
-
for i in range(args.exp):
|
101 |
-
tmp = []
|
102 |
-
for j in range(len(img_list) - 1):
|
103 |
-
mid = model.inference(img_list[j], img_list[j + 1])
|
104 |
-
tmp.append(img_list[j])
|
105 |
-
tmp.append(mid)
|
106 |
-
tmp.append(img1)
|
107 |
-
img_list = tmp
|
108 |
-
|
109 |
-
if not os.path.exists('output'):
|
110 |
-
os.mkdir('output')
|
111 |
-
for i in range(len(img_list)):
|
112 |
if args.img[0].endswith('.exr') and args.img[1].endswith('.exr'):
|
113 |
-
cv2.
|
|
|
|
|
|
|
|
|
114 |
else:
|
115 |
-
cv2.
|
116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
|
118 |
if __name__ == "__main__":
|
119 |
main()
|
|
|
7 |
|
8 |
|
9 |
def main():
|
10 |
+
|
11 |
+
warnings.filterwarnings("ignore")
|
12 |
+
|
13 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
14 |
+
torch.set_grad_enabled(False)
|
15 |
+
if torch.cuda.is_available():
|
16 |
+
torch.backends.cudnn.enabled = True
|
17 |
+
torch.backends.cudnn.benchmark = True
|
18 |
+
|
19 |
+
parser = argparse.ArgumentParser(description='Interpolation for a pair of images')
|
20 |
+
parser.add_argument('--img', dest='img', nargs=2, required=True)
|
21 |
+
parser.add_argument('--exp', default=4, type=int, required=True)
|
22 |
+
parser.add_argument('--ratio', default=0, type=float, help='inference ratio between two images with 0 - 1 range')
|
23 |
+
parser.add_argument('--rthreshold', default=0.02, type=float, help='returns image when actual ratio falls in given range threshold')
|
24 |
+
parser.add_argument('--rmaxcycles', default=8, type=int, help='limit max number of bisectional cycles')
|
25 |
+
parser.add_argument('--model', dest='modelDir', type=str, default='train_log', help='directory with trained model files')
|
26 |
+
|
27 |
+
args = parser.parse_args()
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
try:
|
30 |
try:
|
31 |
+
try:
|
32 |
+
from model.RIFE_HDv2 import Model
|
33 |
+
model = Model()
|
34 |
+
model.load_model(args.modelDir, -1)
|
35 |
+
print("Loaded v2.x HD model.")
|
36 |
+
except:
|
37 |
+
from train_log.RIFE_HDv3 import Model
|
38 |
+
model = Model()
|
39 |
+
model.load_model(args.modelDir, -1)
|
40 |
+
print("Loaded v3.x HD model.")
|
41 |
except:
|
42 |
+
from model.RIFE_HD import Model
|
43 |
model = Model()
|
44 |
model.load_model(args.modelDir, -1)
|
45 |
+
print("Loaded v1.x HD model")
|
46 |
except:
|
47 |
+
from model.RIFE import Model
|
48 |
model = Model()
|
49 |
model.load_model(args.modelDir, -1)
|
50 |
+
print("Loaded ArXiv-RIFE model")
|
51 |
+
model.eval()
|
52 |
+
model.device()
|
53 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
if args.img[0].endswith('.exr') and args.img[1].endswith('.exr'):
|
55 |
+
img0 = cv2.imread(args.img[0], cv2.IMREAD_COLOR | cv2.IMREAD_ANYDEPTH)
|
56 |
+
img1 = cv2.imread(args.img[1], cv2.IMREAD_COLOR | cv2.IMREAD_ANYDEPTH)
|
57 |
+
img0 = (torch.tensor(img0.transpose(2, 0, 1)).to(device)).unsqueeze(0)
|
58 |
+
img1 = (torch.tensor(img1.transpose(2, 0, 1)).to(device)).unsqueeze(0)
|
59 |
+
|
60 |
else:
|
61 |
+
img0 = cv2.imread(args.img[0], cv2.IMREAD_UNCHANGED)
|
62 |
+
img1 = cv2.imread(args.img[1], cv2.IMREAD_UNCHANGED)
|
63 |
+
img0 = (torch.tensor(img0.transpose(2, 0, 1)).to(device) / 255.).unsqueeze(0)
|
64 |
+
img1 = (torch.tensor(img1.transpose(2, 0, 1)).to(device) / 255.).unsqueeze(0)
|
65 |
+
|
66 |
+
n, c, h, w = img0.shape
|
67 |
+
ph = ((h - 1) // 32 + 1) * 32
|
68 |
+
pw = ((w - 1) // 32 + 1) * 32
|
69 |
+
padding = (0, pw - w, 0, ph - h)
|
70 |
+
img0 = F.pad(img0, padding)
|
71 |
+
img1 = F.pad(img1, padding)
|
72 |
+
|
73 |
+
|
74 |
+
if args.ratio:
|
75 |
+
img_list = [img0]
|
76 |
+
img0_ratio = 0.0
|
77 |
+
img1_ratio = 1.0
|
78 |
+
if args.ratio <= img0_ratio + args.rthreshold / 2:
|
79 |
+
middle = img0
|
80 |
+
elif args.ratio >= img1_ratio - args.rthreshold / 2:
|
81 |
+
middle = img1
|
82 |
+
else:
|
83 |
+
tmp_img0 = img0
|
84 |
+
tmp_img1 = img1
|
85 |
+
for inference_cycle in range(args.rmaxcycles):
|
86 |
+
middle = model.inference(tmp_img0, tmp_img1)
|
87 |
+
middle_ratio = ( img0_ratio + img1_ratio ) / 2
|
88 |
+
if args.ratio - (args.rthreshold / 2) <= middle_ratio <= args.ratio + (args.rthreshold / 2):
|
89 |
+
break
|
90 |
+
if args.ratio > middle_ratio:
|
91 |
+
tmp_img0 = middle
|
92 |
+
img0_ratio = middle_ratio
|
93 |
+
else:
|
94 |
+
tmp_img1 = middle
|
95 |
+
img1_ratio = middle_ratio
|
96 |
+
img_list.append(middle)
|
97 |
+
img_list.append(img1)
|
98 |
+
else:
|
99 |
+
img_list = [img0, img1]
|
100 |
+
for i in range(args.exp):
|
101 |
+
tmp = []
|
102 |
+
for j in range(len(img_list) - 1):
|
103 |
+
mid = model.inference(img_list[j], img_list[j + 1])
|
104 |
+
tmp.append(img_list[j])
|
105 |
+
tmp.append(mid)
|
106 |
+
tmp.append(img1)
|
107 |
+
img_list = tmp
|
108 |
+
|
109 |
+
if not os.path.exists('output'):
|
110 |
+
os.mkdir('output')
|
111 |
+
for i in range(len(img_list)):
|
112 |
+
if args.img[0].endswith('.exr') and args.img[1].endswith('.exr'):
|
113 |
+
cv2.imwrite('output/img{}.exr'.format(i), (img_list[i][0]).cpu().numpy().transpose(1, 2, 0)[:h, :w], [cv2.IMWRITE_EXR_TYPE, cv2.IMWRITE_EXR_TYPE_HALF])
|
114 |
+
else:
|
115 |
+
cv2.imwrite('output/img{}.png'.format(i), (img_list[i][0] * 255).byte().cpu().numpy().transpose(1, 2, 0)[:h, :w])
|
116 |
+
|
117 |
+
cmd_inference_img(args.img,args.exp,args.model)
|
118 |
|
119 |
if __name__ == "__main__":
|
120 |
main()
|