samir-fama's picture
Update app.py
cb481b7 verified
#===========================================================================#
#===========================================================================#
# SETUP INSTALLATIONS
#===========================================================================#
#===========================================================================#
import os
import sys
def install_packages():
# Atualizar pip
os.system(f"pip install --upgrade pip")
# Instalar pacotes necessários
packages = [
"opencv-python-headless==4.10.0.82",
"ultralytics==8.3",
"telethon==1.37.0",
"cryptography==43.0.3",
"nest_asyncio",
"torch==2.5.0 torchvision==0.20.0 torchaudio==2.5.0 --index-url https://download.pytorch.org/whl/cpu",
"paddlepaddle==2.6.2 -f https://paddlepaddle.org.cn/whl/mkl/avx/stable.html",
"paddleocr==2.9.1",
"prettytable==3.12",
"gradio==5.6",
]
for package in packages:
print(f"Installing {package}...")
os.system(f"pip install {package}")
print("All packages installed successfully.")
install_packages()
#===========================================================================#
#===========================================================================#
# PLAY THE CLASS
#===========================================================================#
#===========================================================================#
import gradio as gr
import numpy as np
import cv2
from collections import deque, OrderedDict, defaultdict
from ultralytics import YOLO
from paddleocr import PaddleOCR
import asyncio
import threading
from telethon import TelegramClient
from cryptography.fernet import Fernet
import json
import nest_asyncio
from prettytable import PrettyTable
import time
# Aplicar nest_asyncio para permitir loops de eventos aninhados
nest_asyncio.apply()
# Função para obter o caminho de recursos
def resource_path(relative_path):
return os.path.join(os.getcwd(), relative_path)
# Classe adaptada para processar frames individuais
class LicensePlateProcessor:
def __init__(self):
# Carregar modelo YOLO
self.last_frame_time = None # Armazena o tempo do último frame processado
self.fps = 0 # Inicializa o FPS como zero
model_path = resource_path('best.pt')
self.model = YOLO(model_path, task='detect')
# Carregar PaddleOCR
paddleocr_model_dir = resource_path('paddleocr_models')
self.ocr = PaddleOCR(
use_angle_cls=True,
use_gpu=False,
lang='en',
det_algorithm='DB',
rec_algorithm='CRNN',
show_log=False,
rec_model_dir=os.path.join(paddleocr_model_dir, 'en_PP-OCRv3_rec_infer'),
det_model_dir=os.path.join(paddleocr_model_dir, 'en_PP-OCRv3_det_infer'),
cls_model_dir=os.path.join(paddleocr_model_dir, 'ch_ppocr_mobile_v2.0_cls_infer')
)
# Carregar dados encriptados
self.load_encrypted_data()
# Inicializar TelegramClient
self.telegram_client = TelegramClient(self.session_name, self.api_id, self.api_hash)
self.telegram_client.start()
# Memória de placas
self.plates_memory = deque(maxlen=500)
self.last_sixteen_plates = OrderedDict()
# Filas para placas aguardando resposta
self.waiting_plates = {}
# Iniciar loop asyncio em uma thread separada
self.loop = asyncio.get_event_loop()
self.loop_thread = threading.Thread(target=self.start_loop, daemon=True)
self.loop_thread.start()
# Iniciar tarefa assíncrona para verificar respostas
asyncio.run_coroutine_threadsafe(self.check_responses(), self.loop)
def start_loop(self):
"""Inicia o loop de eventos asyncio."""
asyncio.set_event_loop(self.loop)
self.loop.run_forever()
def load_encrypted_data(self):
"""Carrega e decripta os dados sensíveis."""
encrypted_data_path = resource_path('SECRET_DATA.enc')
decrypt_key_path = resource_path('decrypt_key.txt')
with open(encrypted_data_path, "rb") as f:
data_encrypted = f.read()
with open(decrypt_key_path, "r") as key_file:
key_str = key_file.read().strip()
key = key_str.encode('utf-8')
cipher = Fernet(key)
data_decrypted = cipher.decrypt(data_encrypted)
config = json.loads(data_decrypted.decode())
self.api_id = config["api_id"]
self.api_hash = config["api_hash"]
self.phone_number = config["phone_number"]
self.session_name = 'orlandini_hf.session' #resource_path(config["session_name"])
def has_seven(self, plate_text):
"""Verifica o status de uma placa."""
# Verificar se a placa está na memória
for item in self.plates_memory:
if item['plate'] == plate_text:
return item['has_seven']
# Verificar se está aguardando resposta
if plate_text in self.waiting_plates:
return self.waiting_plates[plate_text]
else:
# Enviar placa para o bot do Telegram
self.waiting_plates[plate_text] = 'Waiting'
asyncio.run_coroutine_threadsafe(self.send_plate(plate_text), self.loop)
return 'Waiting'
async def send_plate(self, plate_text):
"""Envia a placa para o bot do Telegram."""
chat_identifier = '@LT_BUSCABOT'
try:
await self.telegram_client.connect()
await self.telegram_client.send_message(chat_identifier, plate_text)
print(f"Enviado para Telegram: {plate_text}")
except Exception as e:
print(f"Erro ao enviar placa {plate_text}: {e}")
async def check_responses(self):
"""Verifica respostas do bot do Telegram."""
while True:
if not self.waiting_plates:
await asyncio.sleep(1)
continue
chat_identifier = '@LT_BUSCABOT'
limit = 20
try:
await self.telegram_client.connect()
messages = await self.telegram_client.get_messages(chat_identifier, limit=limit)
# print(messages)
for message in messages:
text = message.text
# Check if message is a response to one of our plates
for plate in list(self.waiting_plates.keys()):
if plate.lower() in text.lower():
# Found response for this plate
if 'Placa Localizada' in text:
self.waiting_plates.pop(plate)
self.plates_memory.append({'plate': plate, 'has_seven': False})
elif 'não foi encontrada' in text:
self.waiting_plates.pop(plate)
self.plates_memory.append({'plate': plate, 'has_seven': True})
elif 'não é uma placa válida' in text:
self.waiting_plates.pop(plate)
self.plates_memory.append({'plate': plate, 'has_seven': 'Non Valid'})
# Update the plate status in the displayed grid
self.update_displayed_plate(plate)
except Exception as e:
print(f"Error checking responses: {e}")
await asyncio.sleep(2)
def update_displayed_plate(self, plate):
"""Atualiza o status da placa exibida na tabela."""
for item in self.plates_memory:
if item['plate'] == plate:
if item['has_seven'] == 'Non Valid':
self.last_sixteen_plates.pop(plate, None)
else:
self.last_sixteen_plates[plate] = item['has_seven']
break
# Manter apenas as últimas 16 placas válidas
self.last_sixteen_plates = OrderedDict((p, s) for p, s in self.last_sixteen_plates.items() if s != 'Non Valid')
while len(self.last_sixteen_plates) > 16:
self.last_sixteen_plates.popitem(last=False)
def remove_non_alphanumeric(self, text):
"""Remove caracteres não alfanuméricos."""
return ''.join(char for char in text if char.isalnum())
def has_number_and_letter(self, text):
"""Verifica se o texto contém letras e números."""
return text.isalnum() and not text.isalpha() and not text.isdigit()
def process_license_plates(self, ocr_result):
"""Processa o resultado do OCR para identificar placas."""
def is_overlapping(box1, box2):
x1_min = min(point[0] for point in box1)
x1_max = max(point[0] for point in box1)
y1_min = min(point[1] for point in box1)
y1_max = max(point[1] for point in box1)
x2_min = min(point[0] for point in box2)
x2_max = max(point[0] for point in box2)
y2_min = min(point[1] for point in box2)
y2_max = max(point[1] for point in box2)
# Verificar sobreposição em X
overlap_x = (x1_max + 2 >= x2_min - 2) and (x1_min - 2 <= x2_max + 2)
# Verificar sobreposição em Y
overlap_y = (y1_max + 2 >= y2_min - 2) and (y1_min - 2 <= y2_max + 2)
return overlap_x and overlap_y
# Extrair caixas e textos
boxes = [item[0] for item in ocr_result[0]]
strings = [item[1][0] for item in ocr_result[0]]
# Separar em placas completas e segmentos parciais
full_plates = []
partial_segments = []
for box, s in zip(boxes, strings):
if len(s) >= 7:
full_plates.append((box, s))
elif len(s) in [3, 4]:
partial_segments.append((box, s))
# Processar segmentos parciais
n = len(partial_segments)
parent = list(range(n))
def find(i):
while parent[i] != i:
parent[i] = parent[parent[i]]
i = parent[i]
return i
def union(i, j):
pi = find(i)
pj = find(j)
if pi != pj:
parent[pj] = pi
# Construir grupos com base na sobreposição
for i in range(n):
for j in range(i + 1, n):
if is_overlapping(partial_segments[i][0], partial_segments[j][0]):
union(i, j)
# Agrupar as caixas
groups = defaultdict(list)
for i in range(n):
groups[find(i)].append(partial_segments[i])
# Concatenar textos em cada grupo
concatenated_partials = []
for group in groups.values():
# Ordenar com base na coordenada Y mínima (de cima para baixo)
sorted_group = sorted(group, key=lambda x: min(point[1] for point in x[0]))
concatenated = ''.join([s for box, s in sorted_group])
concatenated_partials.append(concatenated)
# Adicionar placas completas
all_plates = [s for box, s in full_plates] + concatenated_partials
return all_plates
def perform_ocr(self, img_array):
"""Realiza OCR na imagem e retorna os textos detectados."""
if img_array.shape[0] == 0 or img_array.shape[1] == 0:
return None
result = self.ocr.ocr(img_array, cls=True)
if not result[0]:
return None
return self.process_license_plates(result)
def save_plate(self, plate_text):
"""Salva o status da placa."""
# Verificar se a placa está na memória
for item in self.plates_memory:
if item['plate'] == plate_text:
return item['has_seven']
# Obter o status a partir da função has_seven
has_seven = self.has_seven(plate_text)
if has_seven != 'Waiting':
self.plates_memory.append({'plate': plate_text, 'has_seven': has_seven})
return has_seven
def process_frame(self, frame):
"""Processa um frame individual da webcam."""
current_time = time.time()
# Calcula a diferença temporal e o FPS
if self.last_frame_time:
time_diff = current_time - self.last_frame_time
if time_diff > 0: # Evita divisão por zero
self.fps = 1 / time_diff
# Atualiza o tempo do último frame
self.last_frame_time = current_time
print(f"FPS: {self.fps:.2f}")
img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# Detectar placas usando YOLO
results = self.model.predict(img, imgsz=256, conf=0.5)
plates_list = []
for res in results[0].boxes.data:
x1, y1, x2, y2 = int(res[0]), int(res[1]), int(res[2]), int(res[3])
# Ajustar o recorte para incluir padding
if (y2 - y1) > 0 and (x2 - x1) > 0:
prod = img.shape[0] * img.shape[1]
adj = round(5 * prod / 315000)
y1_adj = max(y1 - adj, 0)
y2_adj = min(y2 + adj, img.shape[0])
x1_adj = max(x1 - adj, 0)
x2_adj = min(x2 + adj, img.shape[1])
crop = img[y1_adj:y2_adj, x1_adj:x2_adj]
# Redimensionar o recorte
scale_factor = 3
new_size = (int(crop.shape[1] * scale_factor), int(crop.shape[0] * scale_factor))
resized_crop = cv2.resize(crop, new_size, interpolation=cv2.INTER_LINEAR)
# Realizar OCR
text_list = self.perform_ocr(resized_crop)
if text_list is None:
continue
for text in text_list:
text = self.remove_non_alphanumeric(text)
if text and self.has_number_and_letter(text):
has_seven = self.save_plate(text)
plates_list.append((text, has_seven))
if text not in self.last_sixteen_plates and has_seven != 'Non Valid':
if len(self.last_sixteen_plates) >= 16:
self.last_sixteen_plates.popitem(last=False)
self.last_sixteen_plates[text] = has_seven
# Atualizar a exibição
return self.get_display_table()
def get_display_table(self):
"""Retorna a tabela das últimas 16 placas detectadas."""
if not self.last_sixteen_plates:
return "Nenhuma placa detectada ainda."
else:
table = PrettyTable()
table.field_names = ["Placa", "Status"]
for plate, status in self.last_sixteen_plates.items():
if status != 'Waiting' and status != 'Non Valid':
status_text = 'Okay' if status == True else '!EITA!'
table.add_row([plate, status_text])
return table.get_string()
#===========================================================================#
#===========================================================================#
# PLAY GRADIO
#===========================================================================#
#===========================================================================#
def js_to_prefere_the_back_camera_of_mobilephones():
custom_html = """
<script>
const originalGetUserMedia = navigator.mediaDevices.getUserMedia.bind(navigator.mediaDevices);
navigator.mediaDevices.getUserMedia = (constraints) => {
if (!constraints.video.facingMode) {
constraints.video.facingMode = {ideal: "environment"};
}
return originalGetUserMedia(constraints);
};
</script>
"""
return custom_html
# Instanciar o processador
processor = LicensePlateProcessor()
# # Função para ser chamada pelo Gradio
# def process_webcam_frame(frame):
# return processor.process_frame(frame)
# Modificar a função process_webcam_frame
def process_webcam_frame(frame, resize_factor):
if frame is None:
return "Frame não detectado"
# Redimensionar o frame com o fator fornecido
original_size = frame.shape[:2] # Altura e largura originais
new_size = (
int(original_size[1] * resize_factor),
int(original_size[0] * resize_factor),
)
resized_frame = cv2.resize(frame, new_size, interpolation=cv2.INTER_LINEAR)
# Printar as dimensões do frame processado
print(f"Original frame size: {original_size}, Resized frame size: {new_size}")
# Processar o frame redimensionado
return processor.process_frame(resized_frame)
# resize_factor = gr.Slider(
# minimum=0.1, maximum=3.0, step=0.1, value=1.0, label="Fator de Redimensionamento"
# )
with gr.Blocks(head=js_to_prefere_the_back_camera_of_mobilephones()) as demo:
with gr.Row():
with gr.Column():
# Criar entrada para webcam
input_img = gr.Image(
label="Webcam",
sources="webcam",
streaming=True,
mirror_webcam=False
)
# Associar o slider ao layout
resize_factor_input = gr.Slider(minimum=0.1, maximum=1.1, step=0.01, value=1.0, label="Fator de Redimensionamento")
with gr.Column():
# Caixa de texto para saída
output_text = gr.Textbox(
label="Últimas 16 Placas Detectadas",
lines=20
)
# Atualizar stream para incluir o novo input
input_img.stream(
process_webcam_frame,
inputs=[input_img, resize_factor_input],
outputs=output_text,
time_limit=None,
stream_every=0.2,
concurrency_limit=None
)
demo.launch()
# demo.launch(debug=True, share=True)