File size: 5,529 Bytes
3db8e9e
5658261
3db8e9e
5658261
 
 
3db8e9e
5658261
 
 
3db8e9e
 
 
 
 
 
 
 
 
5658261
3db8e9e
5658261
3db8e9e
5658261
3db8e9e
 
5658261
 
 
 
3db8e9e
 
 
 
 
5658261
 
 
 
3db8e9e
 
 
 
5658261
 
 
3db8e9e
 
 
 
 
 
 
 
5658261
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3db8e9e
5658261
3db8e9e
 
 
 
 
 
 
 
 
5658261
 
 
 
3db8e9e
 
 
5658261
 
 
3db8e9e
5658261
 
 
3db8e9e
 
 
5658261
3db8e9e
5658261
 
3db8e9e
 
 
 
 
 
 
 
 
 
 
5658261
3db8e9e
 
 
 
 
5658261
3db8e9e
 
5658261
 
 
 
3db8e9e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
from PIL import Image, ImageDraw, ImageFont
import tempfile
import gradio as gr
from smolagents import CodeAgent, InferenceClientModel
from smolagents import DuckDuckGoSearchTool, Tool
from huggingface_hub import InferenceClient

# =========================================================
# Utility functions
# =========================================================

def add_label_to_image(image, label):
    draw = ImageDraw.Draw(image)
    font_path = "/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf"
    font_size = 30
    try:
        font = ImageFont.truetype(font_path, font_size)
    except:
        font = ImageFont.load_default()

    text_bbox = draw.textbbox((0, 0), label, font=font)
    text_width, text_height = text_bbox[2] - text_bbox[0], text_bbox[3] - text_bbox[1]
    position = (image.width - text_width - 20, image.height - text_height - 20)

    rect_margin = 10
    rect_position = [
        position[0] - rect_margin,
        position[1] - rect_margin,
        position[0] + text_width + rect_margin,
        position[1] + text_height + rect_margin,
    ]
    draw.rectangle(rect_position, fill=(0, 0, 0, 128))
    draw.text(position, label, fill="white", font=font)
    return image


def plot_and_save_agent_image(agent_image, label, save_path=None):
    pil_image = agent_image.to_raw()
    labeled_image = add_label_to_image(pil_image, label)
    labeled_image.show()
    if save_path:
        labeled_image.save(save_path)
        print(f"Image saved to {save_path}")
    else:
        print("No save path provided. Image not saved.")


def generate_prompts_for_object(object_name):
    return {
        "past": f"Show an old version of a {object_name} from its early days.",
        "present": f"Show a {object_name} with current features/design/technology.",
        "future": f"Show a futuristic version of a {object_name}, by predicting advanced features and futuristic design."
    }

# =========================================================
# Tool wrapper for m-ric/text-to-image
# =========================================================

class WrappedTextToImageTool(Tool):
    name = "text_to_image"
    description = "Generates an image from a text prompt using the m-ric/text-to-image tool."
    inputs = {
        "prompt": {
            "type": "string",
            "description": "Text prompt to generate an image"
        }
    }
    output_type = "image"

    def __init__(self):
        self.client = InferenceClient("m-ric/text-to-image")

    def forward(self, prompt):
        return self.client.text_to_image(prompt)

# =========================================================
# Tool and Agent Initialization
# =========================================================

image_generation_tool = WrappedTextToImageTool()
search_tool = DuckDuckGoSearchTool()
llm_engine = InferenceClientModel("Qwen/Qwen2.5-72B-Instruct")

agent = CodeAgent(tools=[image_generation_tool, search_tool], model=llm_engine)

# =========================================================
# Main logic for image generation
# =========================================================

def generate_object_history(object_name):
    images = []
    prompts = generate_prompts_for_object(object_name)
    labels = {
        "past": f"{object_name} - Past",
        "present": f"{object_name} - Present",
        "future": f"{object_name} - Future"
    }

    for time_period, prompt in prompts.items():
        print(f"Generating {time_period} frame: {prompt}")
        result = agent.run(prompt)
        images.append(result.to_raw())
        image_filename = f"{object_name}_{time_period}.png"
        plot_and_save_agent_image(result, labels[time_period], save_path=image_filename)

    gif_path = f"{object_name}_evolution.gif"
    images[0].save(gif_path, save_all=True, append_images=images[1:], duration=1000, loop=0)
    return [(f"{object_name}_past.png", labels["past"]),
            (f"{object_name}_present.png", labels["present"]),
            (f"{object_name}_future.png", labels["future"])], gif_path

# =========================================================
# Gradio Interface
# =========================================================

def create_gradio_interface():
    with gr.Blocks() as demo:
        gr.Markdown("# TimeMetamorphy: An Object Evolution Generator")
        gr.Markdown("""
        Explore how everyday objects evolved over time. Enter an object name like "phone", "car", or "bicycle"
        and see its past, present, and future visualized with AI!
        """)

        default_images = [
            ("car_past.png", "Car - Past"),
            ("car_present.png", "Car - Present"),
            ("car_future.png", "Car - Future")
        ]
        default_gif_path = "car_evolution.gif"

        with gr.Row():
            with gr.Column():
                object_name_input = gr.Textbox(label="Enter an object name", placeholder="e.g. bicycle, car, phone")
                generate_button = gr.Button("Generate Evolution")
                image_gallery = gr.Gallery(label="Generated Images", columns=3, rows=1, value=default_images)
                gif_output = gr.Image(label="Generated GIF", value=default_gif_path)

        generate_button.click(fn=generate_object_history, inputs=[object_name_input], outputs=[image_gallery, gif_output])

    return demo

# =========================================================
# Run the app
# =========================================================

demo = create_gradio_interface()
demo.launch(share=True)