File size: 8,575 Bytes
3db8e9e
5658261
3db8e9e
a1ad20a
63f528a
5658261
5ace3a2
 
3db8e9e
497259e
 
 
 
 
 
 
 
 
 
5658261
 
 
3db8e9e
 
 
 
 
 
 
 
 
5658261
3db8e9e
5658261
3db8e9e
5658261
3db8e9e
 
5658261
 
 
 
3db8e9e
 
 
 
 
5658261
 
 
 
3db8e9e
 
 
 
5658261
 
 
3db8e9e
 
 
 
 
 
 
 
5658261
 
 
81328c2
5658261
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81328c2
 
5ace3a2
81328c2
 
 
 
 
 
6305440
81328c2
 
 
 
5ace3a2
b0d6e04
5ace3a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0aed780
5ace3a2
 
 
 
 
 
d7983da
 
 
4ba7421
d7983da
4ba7421
 
81328c2
 
5658261
 
 
d7983da
81328c2
5658261
d6307b2
37383cf
a1ad20a
 
 
 
 
 
d6307b2
5658261
d6307b2
7a56df2
 
9066bb6
5658261
 
 
 
 
 
3db8e9e
5658261
3db8e9e
 
 
 
 
 
 
8349a8f
 
 
 
 
 
3db8e9e
 
8349a8f
 
6d50a88
 
 
 
 
 
 
 
 
 
5658261
 
 
3db8e9e
 
 
4ba7421
 
 
 
3db8e9e
5658261
 
 
3db8e9e
 
 
5658261
3db8e9e
5658261
 
3db8e9e
 
 
 
 
 
 
 
 
 
 
5658261
3db8e9e
4ba7421
 
3db8e9e
 
 
5658261
3db8e9e
 
5658261
 
 
 
3db8e9e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
from PIL import Image, ImageDraw, ImageFont
import tempfile
import gradio as gr
from smolagents import CodeAgent, InferenceClientModel, TransformersModel 
from smolagents import DuckDuckGoSearchTool, Tool
from huggingface_hub import InferenceClient
from diffusers import DiffusionPipeline
import torch

from huggingface_hub import login
import os

token = os.environ.get("HF_TOKEN")
if token:
    login(token=token)
else:
    print("Warning: HF_TOKEN not set. You may not be able to access private models or tools.")


# =========================================================
# Utility functions
# =========================================================

def add_label_to_image(image, label):
    draw = ImageDraw.Draw(image)
    font_path = "/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf"
    font_size = 30
    try:
        font = ImageFont.truetype(font_path, font_size)
    except:
        font = ImageFont.load_default()

    text_bbox = draw.textbbox((0, 0), label, font=font)
    text_width, text_height = text_bbox[2] - text_bbox[0], text_bbox[3] - text_bbox[1]
    position = (image.width - text_width - 20, image.height - text_height - 20)

    rect_margin = 10
    rect_position = [
        position[0] - rect_margin,
        position[1] - rect_margin,
        position[0] + text_width + rect_margin,
        position[1] + text_height + rect_margin,
    ]
    draw.rectangle(rect_position, fill=(0, 0, 0, 128))
    draw.text(position, label, fill="white", font=font)
    return image


def plot_and_save_agent_image(agent_image, label, save_path=None):
    pil_image = agent_image.to_raw()
    labeled_image = add_label_to_image(pil_image, label)
    labeled_image.show()
    if save_path:
        labeled_image.save(save_path)
        print(f"Image saved to {save_path}")
    else:
        print("No save path provided. Image not saved.")


def generate_prompts_for_object(object_name):
    return {
        "past": f"Show an old version of a {object_name} from its early days.",
        "present": f"Show a {object_name} with current features/design/technology.",
        "future": f"Show a futuristic version of a {object_name}, by predicting advanced features and futuristic design."
    }

# =========================================================
# Tool wrapper for m-ric/text-to-image
# =========================================================
'''
class WrappedTextToImageTool(Tool):
    name = "text_to_image"
    description = "Generates an image from a text prompt using the m-ric/text-to-image tool."
    inputs = {
        "prompt": {
            "type": "string",
            "description": "Text prompt to generate an image"
        }
    }
    output_type = "image"

    def __init__(self):
        self.client = InferenceClient("m-ric/text-to-image")

    def forward(self, prompt):
        return self.client.text_to_image(prompt)

'''

'''
class TextToImageTool(Tool):
    description = "This tool creates an image according to a prompt, which is a text description."
    name = "image_generator"
    inputs = {"prompt": {"type": "string", "description": "The image generator prompt. Don't hesitate to add details in the prompt to make the image look better, like 'high-res, photorealistic', etc."}}
    output_type = "image"
    model_sdxl = "black-forest-labs/FLUX.1-schnell"
    client = InferenceClient(model_sdxl, provider="replicate")


    def forward(self, prompt):
        return self.client.text_to_image(prompt)
'''
'''
class TextToImageTool(Tool):
    description = "This tool creates an image according to a prompt. Add details like 'high-res, photorealistic'."
    name = "image_generator"
    inputs = {
        "prompt": {
            "type": "string",
            "description": "The image generation prompt"
        }
    }
    output_type = "image"

    def __init__(self):
        super().__init__()
        dtype = torch.bfloat16
        device = "cuda" if torch.cuda.is_available() else "cpu"
        print(f"Using device: {device}")
        self.pipe = DiffusionPipeline.from_pretrained(
            "aiyouthalliance/Free-Image-Generation-CC0", 
            torch_dtype=dtype
        ).to(device)

    def forward(self, prompt):
        image = self.pipe(prompt).images[0]
        return image
'''
image_generation_tool = Tool.from_space(
    "black-forest-labs/FLUX.1-schnell",
    api_name="/infer",  # Optional if there's only one endpoint
    name="image_generator",
    description="Generate an image from a prompt"
)


# =========================================================
# Tool and Agent Initialization
# =========================================================
#image_generation_tool= TextToImageTool()
#image_generation_tool = WrappedTextToImageTool()
search_tool = DuckDuckGoSearchTool()
#print('iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii')
#llm_engine = InferenceClientModel("Qwen/Qwen2.5-72B-Instruct")
#llm_engine = TransformersModel(
#    model_id="Qwen/Qwen2.5-72B-Instruct",
#    device="cuda",
#    max_new_tokens=5000,
#)

#from smolagents import LiteLLMModel

#llm_engine  = LiteLLMModel(model_id="Qwen/Qwen2.5-72B-Instruct", temperature=0.2, max_tokens=5000)
#llm_engine=InferenceClientModel()

llm_engine = InferenceClientModel("Qwen/Qwen2.5-Coder-32B-Instruct")
agent = CodeAgent(tools=[image_generation_tool, search_tool], model=llm_engine)

# =========================================================
# Main logic for image generation
# =========================================================

def generate_object_history(object_name):
    images = []
    prompts = generate_prompts_for_object(object_name)
    labels = {
        "past": f"{object_name} - Past",
        "present": f"{object_name} - Present",
        "future": f"{object_name} - Future"
    }


    general_instruction = (
        "Search the necessary information and features for the following prompt, "
        "then generate an image of it."
    )

    for time_period, prompt in prompts.items():
        print(f"Generating {time_period} frame: {prompt}")
        #result = agent.run(prompt)

        try:
            result = agent.run(
                general_instruction,
                additional_args={"user_prompt": prompt}
            )
            image = result.to_raw()
        except Exception as e:
            print(f"Agent failed on {time_period}: {e}")
            continue
            
        images.append(result.to_raw())
        image_filename = f"{object_name}_{time_period}.png"
        plot_and_save_agent_image(result, labels[time_period], save_path=image_filename)

    gif_path = f"{object_name}_evolution.gif"
    images[0].save(gif_path, save_all=True, append_images=images[1:], duration=1000, loop=0)
    return [(f"{object_name}_past.png", labels["past"]),
            (f"{object_name}_present.png", labels["present"]),
            (f"{object_name}_future.png", labels["future"])], gif_path
    #return images, gif_path

# =========================================================
# Gradio Interface
# =========================================================

def create_gradio_interface():
    with gr.Blocks() as demo:
        gr.Markdown("# TimeMetamorphy: An Object Evolution Generator")
        gr.Markdown("""
        Explore how everyday objects evolved over time. Enter an object name like "phone", "car", or "bicycle"
        and see its past, present, and future visualized with AI!
        """)

        default_images = [
            ("car_past.png", "Car - Past"),
            ("car_present.png", "Car - Present"),
            ("car_future.png", "Car - Future")
        ]
        default_gif_path = "car_evolution.gif"

        with gr.Row():
            with gr.Column():
                object_name_input = gr.Textbox(label="Enter an object name", placeholder="e.g. bicycle, car, phone")
                generate_button = gr.Button("Generate Evolution")
                image_gallery = gr.Gallery(label="Generated Images", columns=3, rows=1, value=default_images)
                #image_gallery = gr.Gallery(label="Generated Images", columns=3, rows=1, type="filepath")
                gif_output = gr.Image(label="Generated GIF", value=default_gif_path)

        generate_button.click(fn=generate_object_history, inputs=[object_name_input], outputs=[image_gallery, gif_output])

    return demo

# =========================================================
# Run the app
# =========================================================

demo = create_gradio_interface()
demo.launch(share=True)