File size: 8,575 Bytes
3db8e9e 5658261 3db8e9e a1ad20a 63f528a 5658261 5ace3a2 3db8e9e 497259e 5658261 3db8e9e 5658261 3db8e9e 5658261 3db8e9e 5658261 3db8e9e 5658261 3db8e9e 5658261 3db8e9e 5658261 3db8e9e 5658261 81328c2 5658261 81328c2 5ace3a2 81328c2 6305440 81328c2 5ace3a2 b0d6e04 5ace3a2 0aed780 5ace3a2 d7983da 4ba7421 d7983da 4ba7421 81328c2 5658261 d7983da 81328c2 5658261 d6307b2 37383cf a1ad20a d6307b2 5658261 d6307b2 7a56df2 9066bb6 5658261 3db8e9e 5658261 3db8e9e 8349a8f 3db8e9e 8349a8f 6d50a88 5658261 3db8e9e 4ba7421 3db8e9e 5658261 3db8e9e 5658261 3db8e9e 5658261 3db8e9e 5658261 3db8e9e 4ba7421 3db8e9e 5658261 3db8e9e 5658261 3db8e9e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
from PIL import Image, ImageDraw, ImageFont
import tempfile
import gradio as gr
from smolagents import CodeAgent, InferenceClientModel, TransformersModel
from smolagents import DuckDuckGoSearchTool, Tool
from huggingface_hub import InferenceClient
from diffusers import DiffusionPipeline
import torch
from huggingface_hub import login
import os
token = os.environ.get("HF_TOKEN")
if token:
login(token=token)
else:
print("Warning: HF_TOKEN not set. You may not be able to access private models or tools.")
# =========================================================
# Utility functions
# =========================================================
def add_label_to_image(image, label):
draw = ImageDraw.Draw(image)
font_path = "/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf"
font_size = 30
try:
font = ImageFont.truetype(font_path, font_size)
except:
font = ImageFont.load_default()
text_bbox = draw.textbbox((0, 0), label, font=font)
text_width, text_height = text_bbox[2] - text_bbox[0], text_bbox[3] - text_bbox[1]
position = (image.width - text_width - 20, image.height - text_height - 20)
rect_margin = 10
rect_position = [
position[0] - rect_margin,
position[1] - rect_margin,
position[0] + text_width + rect_margin,
position[1] + text_height + rect_margin,
]
draw.rectangle(rect_position, fill=(0, 0, 0, 128))
draw.text(position, label, fill="white", font=font)
return image
def plot_and_save_agent_image(agent_image, label, save_path=None):
pil_image = agent_image.to_raw()
labeled_image = add_label_to_image(pil_image, label)
labeled_image.show()
if save_path:
labeled_image.save(save_path)
print(f"Image saved to {save_path}")
else:
print("No save path provided. Image not saved.")
def generate_prompts_for_object(object_name):
return {
"past": f"Show an old version of a {object_name} from its early days.",
"present": f"Show a {object_name} with current features/design/technology.",
"future": f"Show a futuristic version of a {object_name}, by predicting advanced features and futuristic design."
}
# =========================================================
# Tool wrapper for m-ric/text-to-image
# =========================================================
'''
class WrappedTextToImageTool(Tool):
name = "text_to_image"
description = "Generates an image from a text prompt using the m-ric/text-to-image tool."
inputs = {
"prompt": {
"type": "string",
"description": "Text prompt to generate an image"
}
}
output_type = "image"
def __init__(self):
self.client = InferenceClient("m-ric/text-to-image")
def forward(self, prompt):
return self.client.text_to_image(prompt)
'''
'''
class TextToImageTool(Tool):
description = "This tool creates an image according to a prompt, which is a text description."
name = "image_generator"
inputs = {"prompt": {"type": "string", "description": "The image generator prompt. Don't hesitate to add details in the prompt to make the image look better, like 'high-res, photorealistic', etc."}}
output_type = "image"
model_sdxl = "black-forest-labs/FLUX.1-schnell"
client = InferenceClient(model_sdxl, provider="replicate")
def forward(self, prompt):
return self.client.text_to_image(prompt)
'''
'''
class TextToImageTool(Tool):
description = "This tool creates an image according to a prompt. Add details like 'high-res, photorealistic'."
name = "image_generator"
inputs = {
"prompt": {
"type": "string",
"description": "The image generation prompt"
}
}
output_type = "image"
def __init__(self):
super().__init__()
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
self.pipe = DiffusionPipeline.from_pretrained(
"aiyouthalliance/Free-Image-Generation-CC0",
torch_dtype=dtype
).to(device)
def forward(self, prompt):
image = self.pipe(prompt).images[0]
return image
'''
image_generation_tool = Tool.from_space(
"black-forest-labs/FLUX.1-schnell",
api_name="/infer", # Optional if there's only one endpoint
name="image_generator",
description="Generate an image from a prompt"
)
# =========================================================
# Tool and Agent Initialization
# =========================================================
#image_generation_tool= TextToImageTool()
#image_generation_tool = WrappedTextToImageTool()
search_tool = DuckDuckGoSearchTool()
#print('iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii')
#llm_engine = InferenceClientModel("Qwen/Qwen2.5-72B-Instruct")
#llm_engine = TransformersModel(
# model_id="Qwen/Qwen2.5-72B-Instruct",
# device="cuda",
# max_new_tokens=5000,
#)
#from smolagents import LiteLLMModel
#llm_engine = LiteLLMModel(model_id="Qwen/Qwen2.5-72B-Instruct", temperature=0.2, max_tokens=5000)
#llm_engine=InferenceClientModel()
llm_engine = InferenceClientModel("Qwen/Qwen2.5-Coder-32B-Instruct")
agent = CodeAgent(tools=[image_generation_tool, search_tool], model=llm_engine)
# =========================================================
# Main logic for image generation
# =========================================================
def generate_object_history(object_name):
images = []
prompts = generate_prompts_for_object(object_name)
labels = {
"past": f"{object_name} - Past",
"present": f"{object_name} - Present",
"future": f"{object_name} - Future"
}
general_instruction = (
"Search the necessary information and features for the following prompt, "
"then generate an image of it."
)
for time_period, prompt in prompts.items():
print(f"Generating {time_period} frame: {prompt}")
#result = agent.run(prompt)
try:
result = agent.run(
general_instruction,
additional_args={"user_prompt": prompt}
)
image = result.to_raw()
except Exception as e:
print(f"Agent failed on {time_period}: {e}")
continue
images.append(result.to_raw())
image_filename = f"{object_name}_{time_period}.png"
plot_and_save_agent_image(result, labels[time_period], save_path=image_filename)
gif_path = f"{object_name}_evolution.gif"
images[0].save(gif_path, save_all=True, append_images=images[1:], duration=1000, loop=0)
return [(f"{object_name}_past.png", labels["past"]),
(f"{object_name}_present.png", labels["present"]),
(f"{object_name}_future.png", labels["future"])], gif_path
#return images, gif_path
# =========================================================
# Gradio Interface
# =========================================================
def create_gradio_interface():
with gr.Blocks() as demo:
gr.Markdown("# TimeMetamorphy: An Object Evolution Generator")
gr.Markdown("""
Explore how everyday objects evolved over time. Enter an object name like "phone", "car", or "bicycle"
and see its past, present, and future visualized with AI!
""")
default_images = [
("car_past.png", "Car - Past"),
("car_present.png", "Car - Present"),
("car_future.png", "Car - Future")
]
default_gif_path = "car_evolution.gif"
with gr.Row():
with gr.Column():
object_name_input = gr.Textbox(label="Enter an object name", placeholder="e.g. bicycle, car, phone")
generate_button = gr.Button("Generate Evolution")
image_gallery = gr.Gallery(label="Generated Images", columns=3, rows=1, value=default_images)
#image_gallery = gr.Gallery(label="Generated Images", columns=3, rows=1, type="filepath")
gif_output = gr.Image(label="Generated GIF", value=default_gif_path)
generate_button.click(fn=generate_object_history, inputs=[object_name_input], outputs=[image_gallery, gif_output])
return demo
# =========================================================
# Run the app
# =========================================================
demo = create_gradio_interface()
demo.launch(share=True)
|