AMfeta99's picture
Update app.py
fad0d14 verified
raw
history blame
4.27 kB
from transformers import HfAgent
from PIL import Image, ImageDraw, ImageFont
import gradio as gr
import os
#%% Utility Functions
def add_label_to_image(image, label):
draw = ImageDraw.Draw(image)
font_path = "/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf"
font_size = 30
try:
font = ImageFont.truetype(font_path, font_size)
except:
font = ImageFont.load_default()
text_bbox = draw.textbbox((0, 0), label, font=font)
text_width, text_height = text_bbox[2] - text_bbox[0], text_bbox[3] - text_bbox[1]
position = (image.width - text_width - 20, image.height - text_height - 20)
rect_margin = 10
rect_position = [
position[0] - rect_margin,
position[1] - rect_margin,
position[0] + text_width + rect_margin,
position[1] + text_height + rect_margin,
]
draw.rectangle(rect_position, fill=(0, 0, 0, 128))
draw.text(position, label, fill="white", font=font)
return image
def plot_and_save_agent_image(image, label, save_path=None):
labeled_image = add_label_to_image(image, label)
labeled_image.show()
if save_path:
labeled_image.save(save_path)
print(f"Image saved to {save_path}")
def generate_prompts_for_object(object_name):
return {
"past": f"Show an old version of a {object_name} from its early days.",
"present": f"Show a {object_name} with current features/design/technology.",
"future": f"Show a futuristic version of a {object_name}, predicting advanced features and design."
}
#%% HF Agent Initialization
agent = HfAgent("https://api-inference.huggingface.co/models/HuggingFaceH4/zephyr-7b-beta")
#%% Core Generation Function
def generate_object_history(object_name):
images = []
gif_frames = []
prompts = generate_prompts_for_object(object_name)
labels = {
"past": f"{object_name} - Past",
"present": f"{object_name} - Present",
"future": f"{object_name} - Future"
}
output_image_paths = []
for period, prompt in prompts.items():
print(f"Generating image for: {prompt}")
result = agent.run(prompt)
# Find first image in result (agent returns a dict)
image_path = next((v for v in result.values() if isinstance(v, str) and v.endswith((".png", ".jpg"))), None)
if not image_path or not os.path.exists(image_path):
raise RuntimeError(f"No valid image generated for {prompt}")
image = Image.open(image_path).convert("RGB")
labeled_image = add_label_to_image(image, labels[period])
filename = f"{object_name}_{period}.png"
labeled_image.save(filename)
output_image_paths.append((filename, labels[period]))
gif_frames.append(labeled_image)
# Save animated GIF
gif_path = f"{object_name}_evolution.gif"
gif_frames[0].save(gif_path, save_all=True, append_images=gif_frames[1:], duration=1000, loop=0)
return output_image_paths, gif_path
#%% Gradio Interface
def create_gradio_interface():
with gr.Blocks() as demo:
gr.Markdown("# TimeMetamorphy: An Object Evolution Generator")
gr.Markdown("""
Explore how objects change over time — from past, to present, to future.
Enter any object below and let AI visualize its transformation through the ages.
""")
default_images = [
("car_past.png", "Car - Past"),
("car_present.png", "Car - Present"),
("car_future.png", "Car - Future")
]
default_gif_path = "car_evolution.gif"
with gr.Row():
with gr.Column():
object_name_input = gr.Textbox(label="Enter an object name", placeholder="e.g., bicycle, phone")
generate_button = gr.Button("Generate Evolution")
image_gallery = gr.Gallery(label="Generated Images", show_label=True, columns=3, rows=1, value=default_images)
gif_output = gr.Image(label="Generated GIF", show_label=True, value=default_gif_path)
generate_button.click(fn=generate_object_history, inputs=[object_name_input], outputs=[image_gallery, gif_output])
return demo
# Launch
demo = create_gradio_interface()
demo.launch(share=True)