Spaces:
Sleeping
Sleeping
File size: 10,153 Bytes
e2599e3 2dc3ffd e2599e3 c001c3e e2599e3 c001c3e e2599e3 2dc3ffd e2599e3 c001c3e e2599e3 ef86a0e e2599e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
#pip install langchain_google_genai langgraph gradio
import os
import sys
import typing
from typing import Annotated, Literal, Iterable
from typing_extensions import TypedDict
from langchain_google_genai import ChatGoogleGenerativeAI
from langgraph.graph import StateGraph, START, END
from langgraph.graph.message import add_messages
from langgraph.prebuilt import ToolNode
from langchain_core.tools import tool
from langchain_core.messages import AIMessage, ToolMessage, HumanMessage, BaseMessage, SystemMessage
from random import randint
from tkinter import messagebox
#messagebox.showinfo("Test", "Script run successfully")
import gradio as gr
import logging
class OrderState(TypedDict):
"""State representing the customer's order conversation."""
messages: Annotated[list, add_messages]
order: list[str]
finished: bool
# System instruction for the BaristaBot
BARISTABOT_SYSINT = (
"system",
"You are a BaristaBot, an interactive cafe ordering system. A human will talk to you about the "
"available products. Answer questions about menu items, help customers place orders, and "
"confirm details before finalizing. Use the provided tools to manage the order."
)
WELCOME_MSG = "Welcome to the BaristaBot cafe. Type `q` to quit. How may I serve you today?"
# Initialize the Google Gemini LLM
llm = ChatGoogleGenerativeAI(model="gemini-1.5-flash-latest")
@tool
def get_menu() -> str:
"""Provide the cafe menu."""
#messagebox.showinfo("Test", "Script run successfully")
with open("menu.txt", 'r', encoding = "UTF-8") as f:
return f.read()
@tool
def add_to_order(drink: str, modifiers: Iterable[str] = []) -> str:
"""Adds the specified drink to the customer's order."""
return f"{drink} ({', '.join(modifiers) if modifiers else 'no modifiers'})"
@tool
def confirm_order() -> str:
"""Asks the customer to confirm the order."""
return "Order confirmation requested"
@tool
def get_order() -> str:
"""Returns the current order."""
return "Current order details requested"
@tool
def clear_order() -> str:
"""Clears the current order."""
return "Order cleared"
@tool
def place_order() -> int:
"""Sends the order to the kitchen."""
#messagebox.showinfo("Test", "Order successful!")
return randint(2, 10) # Estimated wait time
def chatbot_with_tools(state: OrderState) -> OrderState:
"""Chatbot with tool handling."""
logging.info(f"Messagelist sent to chatbot node: {[msg.content for msg in state.get('messages', [])]}")
defaults = {"order": [], "finished": False}
# Ensure we always have at least a system message
if not state.get("messages", []):
new_output = AIMessage(content=WELCOME_MSG)
return defaults | state | {"messages": [SystemMessage(content=BARISTABOT_SYSINT), new_output]}
try:
# Prepend system instruction if not already present
messages_with_system = [
SystemMessage(content=BARISTABOT_SYSINT)
] + state.get("messages", [])
# Process messages through the LLM
new_output = llm_with_tools.invoke(messages_with_system)
return defaults | state | {"messages": [new_output]}
except Exception as e:
# Fallback if LLM processing fails
return defaults | state | {"messages": [AIMessage(content=f"I'm having trouble processing that. {str(e)}")]}
def order_node(state: OrderState) -> OrderState:
"""Handles order-related tool calls."""
logging.info("order node")
tool_msg = state.get("messages", [])[-1]
order = state.get("order", [])
outbound_msgs = []
order_placed = False
for tool_call in tool_msg.tool_calls:
tool_name = tool_call["name"]
tool_args = tool_call["args"]
if tool_name == "add_to_order":
modifiers = tool_args.get("modifiers", [])
modifier_str = ", ".join(modifiers) if modifiers else "no modifiers"
order.append(f'{tool_args["drink"]} ({modifier_str})')
response = "\n".join(order)
elif tool_name == "confirm_order":
response = "Your current order:\n" + "\n".join(order) + "\nIs this correct?"
elif tool_name == "get_order":
response = "\n".join(order) if order else "(no order)"
elif tool_name == "clear_order":
order.clear()
response = "Order cleared"
elif tool_name == "place_order":
order_text = "\n".join(order)
order_placed = True
response = f"Order placed successfully!\nYour order:\n{order_text}\nEstimated wait: {randint(2, 10)} minutes"
else:
raise NotImplementedError(f'Unknown tool call: {tool_name}')
outbound_msgs.append(
ToolMessage(
content=response,
name=tool_name,
tool_call_id=tool_call["id"],
)
)
return {"messages": outbound_msgs, "order": order, "finished": order_placed}
def maybe_route_to_tools(state: OrderState) -> str:
"""Route between chat and tool nodes."""
if not (msgs := state.get("messages", [])):
raise ValueError(f"No messages found when parsing state: {state}")
msg = msgs[-1]
if state.get("finished", False):
logging.info("from chatbot GOTO End node")
return END
elif hasattr(msg, "tool_calls") and len(msg.tool_calls) > 0:
if any(tool["name"] in tool_node.tools_by_name.keys() for tool in msg.tool_calls):
logging.info("from chatbot GOTO tools node")
return "tools"
else:
logging.info("from chatbot GOTO order node")
return "ordering"
else:
logging.info("from chatbot GOTO human node")
return "human"
def human_node(state: OrderState) -> OrderState:
"""Handle user input."""
logging.info(f"Messagelist sent to human node: {[msg.content for msg in state.get('messages', [])]}")
last_msg = state["messages"][-1]
if last_msg.content.lower() in {"q", "quit", "exit", "goodbye"}:
state["finished"] = True
return state
def maybe_exit_human_node(state: OrderState) -> Literal["chatbot", "__end__"]:
"""Determine if conversation should continue."""
if state.get("finished", False):
logging.info("from human GOTO End node")
return END
last_msg = state["messages"][-1]
if isinstance(last_msg, AIMessage):
logging.info("Chatbot response obtained, ending conversation")
return END
else:
logging.info("from human GOTO chatbot node")
return "chatbot"
# Prepare tools
auto_tools = [get_menu]
tool_node = ToolNode(auto_tools)
order_tools = [add_to_order, confirm_order, get_order, clear_order, place_order]
# Bind all tools to the LLM
llm_with_tools = llm.bind_tools(auto_tools + order_tools)
# Build the graph
graph_builder = StateGraph(OrderState)
# Add nodes
graph_builder.add_node("chatbot", chatbot_with_tools)
graph_builder.add_node("human", human_node)
graph_builder.add_node("tools", tool_node)
graph_builder.add_node("ordering", order_node)
# Add edges and routing
graph_builder.add_conditional_edges("chatbot", maybe_route_to_tools)
graph_builder.add_conditional_edges("human", maybe_exit_human_node)
graph_builder.add_edge("tools", "chatbot")
graph_builder.add_edge("ordering", "chatbot")
graph_builder.add_edge(START, "human")
# Compile the graph
chat_graph = graph_builder.compile()
def convert_history_to_messages(history: list) -> list[BaseMessage]:
"""
Convert Gradio chat history to a list of Langchain messages.
Args:
- history: Gradio's chat history format
Returns:
- List of Langchain BaseMessage objects
"""
messages = []
for human, ai in history:
if human:
messages.append(HumanMessage(content=human))
if ai:
messages.append(AIMessage(content=ai))
return messages
def gradio_chat(message: str, history: list) -> str:
"""
Gradio-compatible chat function that manages the conversation state.
Args:
- message: User's input message
- history: Gradio's chat history
Returns:
- Bot's response as a string
"""
logging.info(f"{len(history)} history so far: {history}")
# Ensure non-empty message
if not message or message.strip() == "":
message = "Hello, how can I help you today?"
# Convert history to Langchain messages
conversation_messages = []
for old_message in history:
if old_message["content"].strip():
if old_message["role"] == "user":
conversation_messages.append(HumanMessage(content=old_message["content"]))
if old_message["role"] == "assistant":
conversation_messages.append(AIMessage(content=old_message["content"]))
# Add current message
conversation_messages.append(HumanMessage(content=message))
# Create initial state with conversation history
conversation_state = {
"messages": conversation_messages,
"order": [],
"finished": False
}
logging.info(f"Conversation so far: {str(conversation_state)}")
try:
# Process the conversation through the graph
conversation_state = chat_graph.invoke(conversation_state, {"recursion_limit": 10})
# Extract the latest bot message
latest_message = conversation_state["messages"][-1]
# Return the bot's response content
logging.info(f"return: {latest_message.content}")
return latest_message.content
except Exception as e:
return f"An error occurred: {str(e)}"
# Gradio interface
def launch_baristabot():
gr.ChatInterface(
gradio_chat,
type="messages",
title="BaristaBot",
description="Your friendly AI cafe assistant",
theme="ocean"
).launch()
if __name__ == "__main__":
# initiate logging tool
logging.basicConfig(
stream=sys.stdout,
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s')
launch_baristabot() |