File size: 10,153 Bytes
e2599e3
 
2dc3ffd
e2599e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c001c3e
e2599e3
 
 
 
 
 
 
 
 
 
 
 
 
 
c001c3e
 
e2599e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2dc3ffd
e2599e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c001c3e
 
e2599e3
ef86a0e
 
e2599e3
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
#pip install langchain_google_genai langgraph gradio
import os
import sys
import typing
from typing import Annotated, Literal, Iterable
from typing_extensions import TypedDict

from langchain_google_genai import ChatGoogleGenerativeAI
from langgraph.graph import StateGraph, START, END
from langgraph.graph.message import add_messages
from langgraph.prebuilt import ToolNode
from langchain_core.tools import tool
from langchain_core.messages import AIMessage, ToolMessage, HumanMessage, BaseMessage, SystemMessage
from random import randint

from tkinter import messagebox
#messagebox.showinfo("Test", "Script run successfully")

import gradio as gr
import logging

class OrderState(TypedDict):
    """State representing the customer's order conversation."""
    messages: Annotated[list, add_messages]
    order: list[str]
    finished: bool

# System instruction for the BaristaBot
BARISTABOT_SYSINT = (
    "system",
    "You are a BaristaBot, an interactive cafe ordering system. A human will talk to you about the "
    "available products. Answer questions about menu items, help customers place orders, and "
    "confirm details before finalizing. Use the provided tools to manage the order."
)

WELCOME_MSG = "Welcome to the BaristaBot cafe. Type `q` to quit. How may I serve you today?"

# Initialize the Google Gemini LLM
llm = ChatGoogleGenerativeAI(model="gemini-1.5-flash-latest")

@tool
def get_menu() -> str:
    """Provide the cafe menu."""
    #messagebox.showinfo("Test", "Script run successfully")
    with open("menu.txt", 'r', encoding = "UTF-8") as f:
        return f.read()

@tool
def add_to_order(drink: str, modifiers: Iterable[str] = []) -> str:
    """Adds the specified drink to the customer's order."""
    return f"{drink} ({', '.join(modifiers) if modifiers else 'no modifiers'})"

@tool
def confirm_order() -> str:
    """Asks the customer to confirm the order."""
    return "Order confirmation requested"

@tool
def get_order() -> str:
    """Returns the current order."""
    return "Current order details requested"

@tool
def clear_order() -> str:
    """Clears the current order."""
    return "Order cleared"

@tool
def place_order() -> int:
    """Sends the order to the kitchen."""
    #messagebox.showinfo("Test", "Order successful!")
    return randint(2, 10)  # Estimated wait time

def chatbot_with_tools(state: OrderState) -> OrderState:
    """Chatbot with tool handling."""
    logging.info(f"Messagelist sent to chatbot node: {[msg.content for msg in state.get('messages', [])]}")
    defaults = {"order": [], "finished": False}

    # Ensure we always have at least a system message
    if not state.get("messages", []):
        new_output = AIMessage(content=WELCOME_MSG)
        return defaults | state | {"messages": [SystemMessage(content=BARISTABOT_SYSINT), new_output]}

    try:
        # Prepend system instruction if not already present
        messages_with_system = [
            SystemMessage(content=BARISTABOT_SYSINT)
        ] + state.get("messages", [])

        # Process messages through the LLM
        new_output = llm_with_tools.invoke(messages_with_system)

        return defaults | state | {"messages": [new_output]}
    except Exception as e:
        # Fallback if LLM processing fails
        return defaults | state | {"messages": [AIMessage(content=f"I'm having trouble processing that. {str(e)}")]}

def order_node(state: OrderState) -> OrderState:
    """Handles order-related tool calls."""
    logging.info("order node")
    tool_msg = state.get("messages", [])[-1]
    order = state.get("order", [])
    outbound_msgs = []
    order_placed = False

    for tool_call in tool_msg.tool_calls:
        tool_name = tool_call["name"]
        tool_args = tool_call["args"]

        if tool_name == "add_to_order":
            modifiers = tool_args.get("modifiers", [])
            modifier_str = ", ".join(modifiers) if modifiers else "no modifiers"
            order.append(f'{tool_args["drink"]} ({modifier_str})')
            response = "\n".join(order)

        elif tool_name == "confirm_order":
            response = "Your current order:\n" + "\n".join(order) + "\nIs this correct?"

        elif tool_name == "get_order":
            response = "\n".join(order) if order else "(no order)"

        elif tool_name == "clear_order":
            order.clear()
            response = "Order cleared"

        elif tool_name == "place_order":
            order_text = "\n".join(order)
            order_placed = True
            response = f"Order placed successfully!\nYour order:\n{order_text}\nEstimated wait: {randint(2, 10)} minutes"

        else:
            raise NotImplementedError(f'Unknown tool call: {tool_name}')

        outbound_msgs.append(
            ToolMessage(
                content=response,
                name=tool_name,
                tool_call_id=tool_call["id"],
            )
        )

    return {"messages": outbound_msgs, "order": order, "finished": order_placed}

def maybe_route_to_tools(state: OrderState) -> str:
    """Route between chat and tool nodes."""
    if not (msgs := state.get("messages", [])):
        raise ValueError(f"No messages found when parsing state: {state}")

    msg = msgs[-1]

    if state.get("finished", False):
        logging.info("from chatbot GOTO End node")
        return END

    elif hasattr(msg, "tool_calls") and len(msg.tool_calls) > 0:
        if any(tool["name"] in tool_node.tools_by_name.keys() for tool in msg.tool_calls):
            logging.info("from chatbot GOTO tools node")
            return "tools"
        else:
            logging.info("from chatbot GOTO order node")
            return "ordering"

    else:
        logging.info("from chatbot GOTO human node")
        return "human"

def human_node(state: OrderState) -> OrderState:
    """Handle user input."""
    logging.info(f"Messagelist sent to human node: {[msg.content for msg in state.get('messages', [])]}")
    last_msg = state["messages"][-1]

    if last_msg.content.lower() in {"q", "quit", "exit", "goodbye"}:
        state["finished"] = True

    return state

def maybe_exit_human_node(state: OrderState) -> Literal["chatbot", "__end__"]:
    """Determine if conversation should continue."""
    if state.get("finished", False):
        logging.info("from human GOTO End node")
        return END
    last_msg = state["messages"][-1]
    if isinstance(last_msg, AIMessage):
        logging.info("Chatbot response obtained, ending conversation")
        return END
    else:
        logging.info("from human GOTO chatbot node")
        return "chatbot"

# Prepare tools
auto_tools = [get_menu]
tool_node = ToolNode(auto_tools)

order_tools = [add_to_order, confirm_order, get_order, clear_order, place_order]

# Bind all tools to the LLM
llm_with_tools = llm.bind_tools(auto_tools + order_tools)

# Build the graph
graph_builder = StateGraph(OrderState)

# Add nodes
graph_builder.add_node("chatbot", chatbot_with_tools)
graph_builder.add_node("human", human_node)
graph_builder.add_node("tools", tool_node)
graph_builder.add_node("ordering", order_node)

# Add edges and routing
graph_builder.add_conditional_edges("chatbot", maybe_route_to_tools)
graph_builder.add_conditional_edges("human", maybe_exit_human_node)
graph_builder.add_edge("tools", "chatbot")
graph_builder.add_edge("ordering", "chatbot")
graph_builder.add_edge(START, "human")

# Compile the graph
chat_graph = graph_builder.compile()

def convert_history_to_messages(history: list) -> list[BaseMessage]:
    """
    Convert Gradio chat history to a list of Langchain messages.
    
    Args:
    - history: Gradio's chat history format
    
    Returns:
    - List of Langchain BaseMessage objects
    """
    messages = []
    for human, ai in history:
        if human:
            messages.append(HumanMessage(content=human))
        if ai:
            messages.append(AIMessage(content=ai))
    return messages

def gradio_chat(message: str, history: list) -> str:
    """
    Gradio-compatible chat function that manages the conversation state.
    
    Args:
    - message: User's input message
    - history: Gradio's chat history
    
    Returns:
    - Bot's response as a string
    """
    logging.info(f"{len(history)} history so far: {history}")
    # Ensure non-empty message
    if not message or message.strip() == "":
        message = "Hello, how can I help you today?"

    # Convert history to Langchain messages
    conversation_messages = []
    for old_message in history:
        if old_message["content"].strip():
            if old_message["role"] == "user":
                conversation_messages.append(HumanMessage(content=old_message["content"]))
            if old_message["role"] == "assistant":
                conversation_messages.append(AIMessage(content=old_message["content"]))
    
    # Add current message
    conversation_messages.append(HumanMessage(content=message))
    
    # Create initial state with conversation history
    conversation_state = {
        "messages": conversation_messages, 
        "order": [], 
        "finished": False
    }
    logging.info(f"Conversation so far: {str(conversation_state)}")
    try:
        # Process the conversation through the graph
        conversation_state = chat_graph.invoke(conversation_state, {"recursion_limit": 10})
        
        # Extract the latest bot message
        latest_message = conversation_state["messages"][-1]
        
        # Return the bot's response content
        logging.info(f"return: {latest_message.content}")
        return latest_message.content
    
    except Exception as e:
        return f"An error occurred: {str(e)}"

# Gradio interface
def launch_baristabot():
    gr.ChatInterface(
        gradio_chat,
        type="messages",
        title="BaristaBot",
        description="Your friendly AI cafe assistant",
        theme="ocean"
    ).launch()

if __name__ == "__main__":
    # initiate logging tool
    logging.basicConfig(
                    stream=sys.stdout,
                    level=logging.INFO,
                    format='%(asctime)s - %(levelname)s - %(message)s')
    launch_baristabot()