DemoCropMapping / utils.py
ignaziogallo
resolved bug of zip uploading
3c2c5b7
raw
history blame
27.8 kB
import os
import random
import sys
from functools import partial
import numpy
import numpy as np
import rasterio
import torch
import torch.nn.functional as F
from torch import nn
from torch.autograd import Variable
#@title Dataset Code
def print_stats(stats):
print_lst = list()
for k, v in zip(stats.keys(), stats.values()):
print_lst.append("{}:{}".format(k, v))
print('\n', ", ".join(print_lst))
def get_dates(path, n=None):
"""
extracts a list of unique dates from dataset sample
:param path: to dataset sample folder
:param n: choose n random samples from all available dates
:return: list of unique dates in YYYYMMDD format
"""
files = os.listdir(path)
dates = list()
for f in files:
f = f.split(".")[0]
if len(f) == 8: # 20160101
dates.append(f)
dates = set(dates)
if n is not None:
dates = random.sample(dates, n)
dates = list(dates)
dates.sort()
return dates
def get_all_dates(path, num_max_dates):
"""
extracts a list of unique dates from dataset sample
:param path: to dataset sample folder
:param num_max_dates: choose num_max_dates random samples from all available dates
:return: list of unique dates in YYYYMMDD format
"""
files = os.listdir(path)
dates = list()
for f in files:
f = f.split(".")[0]
if len(f) == 8: # 20160101
dates.append(f)
dates = set(dates)
if num_max_dates < len(dates):
dates = random.sample(dates, num_max_dates)
dates = list(dates)
dates.sort()
return dates
def get_sliding_window(pos, x_annual_time_series, win_size):
# x_annual_time_series to sliding window
sw_stop = pos + 1
sw_start = sw_stop - win_size
if sw_start < 0:
# batch, channels, time_series, H, W = x_annual_time_series.shape
channels, time_series, H, W = x_annual_time_series.shape
# x_win = torch.zeros(batch, channels, win_size, H, W)
x_win = torch.zeros(channels, win_size, H, W)
# x_win[:, :, -sw_stop:, :, :] = x_annual_time_series[:, :, :sw_stop, :, :]
x_win[:, -sw_stop:, :, :] = x_annual_time_series[:, :sw_stop, :, :]
else:
# x_annual[batch, channels, time_series, H, W]
# x_win = x_annual_time_series[:, :, sw_start:sw_stop, :, :]
x_win = x_annual_time_series[:, sw_start:sw_stop, :, :]
return x_win
def read_classes(csv):
with open(csv, 'r') as f:
classes = f.readlines()
ids = list()
names = list()
reliable_start_grow = list()
reliable_end_grow = list()
unreliable_start_grow = list()
unreliable_end_grow = list()
for row in classes:
row = row.replace("\n", "")
if '|' in row:
cls_info = row.split('|')
# we can have multiple id
id_info = cls_info[0].split(',')
id_info = [int(x) for x in id_info]
# ids.append(int(cls_info[0]))
ids.append(id_info)
names.append(cls_info[1])
if len(cls_info) > 2:
reliable_start_grow.append(cls_info[2])
reliable_end_grow.append(cls_info[3])
if len(cls_info) > 4:
unreliable_start_grow.append(cls_info[2])
unreliable_end_grow.append(cls_info[3])
return ids, names, reliable_start_grow, reliable_end_grow, \
unreliable_start_grow, unreliable_end_grow
def get_patch_id(samples, idx_img):
_path = samples[idx_img]
if _path.endswith(os.sep):
_path = _path[:-1]
_id = os.path.basename(_path)
return _id, _path
class SentinelDailyAnnualDatasetNoLabel(torch.utils.data.Dataset):
'''
If the first label is for example "1|unknown" then this will be replaced with a 0 (zero).
If you want to ignore other labels, then remove them from the classes.txt file and
this class will assigne label 0 (zero).
'''
def __init__(self, root_dirs, years, classes_path, max_seq_length, win_size, tileids=None):
self.max_seq_length = max_seq_length
self.win_size = win_size
# labels read from groudtruth files (y.tif)
# useful field to check the available labels
self.unique_labels = np.array([], dtype=float)
self.reliable_start_grow = list()
self.reliable_stop_grow = list()
self.unreliable_start_grow = list()
self.unreliable_stop_grow = list()
cls_info = read_classes(classes_path)
self.classids = cls_info[0]
self.classes = cls_info[1]
if len(cls_info[2]) > 0:
self.reliable_start_grow = cls_info[2]
self.reliable_stop_grow = cls_info[3]
if len(cls_info[4]) > 0:
self.unreliable_start_grow = cls_info[4]
self.unreliable_stop_grow = cls_info[5]
if type(years) is not list:
years = [years]
self.data_dirs = years
if type(root_dirs) is not list:
root_dirs = [root_dirs]
self.root_dirs = [r.rstrip("/") for r in root_dirs]
self.name = ""
self.samples = list()
self.ndates = list()
for root_dir in self.root_dirs:
print("Reading dataset info:", root_dir)
self.name += os.path.basename(root_dir) + '_'
for d in self.data_dirs:
if not os.path.isdir(os.path.join(root_dir, d)):
sys.exit('The directory ' + os.path.join(root_dir, d) + " does not exist!")
stats = dict(
rejected_nopath=0,
rejected_length=0,
total_samples=0)
dirs = []
if tileids is None:
# files = os.listdir(self.data_dirs)
for d in self.data_dirs:
dirs_name = os.listdir(os.path.join(root_dir, d))
dirs_path = [os.path.join(root_dir, d, f) for f in dirs_name]
dirs.extend(dirs_path)
else:
# tileids e.g. "tileids/train_fold0.tileids" path of line separated tileids specifying
# with open(os.path.join(root_dir, tileids), 'r') as f:
# files = [el.replace("\n", "") for el in f.readlines()]
for d in self.data_dirs:
dirs_path = [os.path.join(root_dir, d, f) for f in tileids]
dirs.extend(dirs_path)
for path in dirs:
if not os.path.exists(path):
stats["rejected_nopath"] += 1
continue
ndates = len(get_dates(path))
stats["total_samples"] += 1
self.samples.append(path)
self.ndates.append(ndates)
print_stats(stats)
def __len__(self):
return len(self.samples)
def __getitem__(self, idx_img):
patch_id, path = get_patch_id(self.samples, idx_img)
dates = get_all_dates(path, self.max_seq_length)
# print("idx_img:", idx_img)
# print("self.samples:", self.samples)
# print("path:", path)
# print("self.max_seq_length:", self.max_seq_length)
# print(dates)
x_annual = list()
for date in dates:
x10_img, profile = read(os.path.join(path, date + ".tif"))
x_annual.append(x10_img)
padding_size = max(0, self.max_seq_length - len(dates))
for i in range(padding_size):
# y_dailies.append(np.zeros_like(y_dailies[0]))
x_annual.append(np.zeros_like(x_annual[0]))
dates.append(dates[-1][:4] + '1231')
# dates = np.pad(dates, (0, padding_size - 1), mode='edge') # padding with mirror
x_annual = np.array(x_annual) * 1e-4
x_annual = torch.from_numpy(x_annual)
# permute channels with time_series (t x c x h x w) -> (c x t x h x w)
x_annual = x_annual.permute(1, 0, 2, 3)
x_annual = x_annual.float()
# create sliding windows from x_annual
x_dailies = list()
for i in range(len(dates)):
x_win = get_sliding_window(i, x_annual, self.win_size)
x_dailies.append(x_win)
x_dailies = torch.stack(x_dailies)
# return x_dailies, y_annual, y_dailies, dates, patch_id
return x_dailies, dates, path
#@title Models code
# annual model
class SimpleNN(nn.Module):
def __init__(self, opt):
super(SimpleNN, self).__init__()
self.num_classes = opt.n_classes
self.conv1 = nn.Conv3d(
opt.sample_duration,
# opt.sample_channels,
64,
kernel_size=(7, 3, 3), # orig: 7
stride=(1, 1, 1), # orig: (1, 2, 2)
padding=(3, 1, 1), # orig: (3, 3, 3)
bias=False)
self.conv2 = nn.Conv3d(
64,
128,
# kernel_size=(opt.sample_channels-opt.n_classes+1, 3, 3), # orig: 7
kernel_size=(3, 3, 3), # orig: 7
stride=(1, 1, 1), # orig: (1, 2, 2)
padding=(1, 1, 1), # orig: (3, 3, 3)
bias=False)
self.conv3 = nn.Conv3d(
128,
1,
# kernel_size=(opt.sample_channels-opt.n_classes+1, 3, 3), # orig: 7
kernel_size=(3, 3, 3), # orig: 7
stride=(1, 1, 1), # orig: (1, 2, 2)
padding=(1, 1, 1), # orig: (3, 3, 3)
bias=False)
@staticmethod
def upsample3d(x, d, h, w):
return F.interpolate(x, size=(d, h, w), mode='trilinear', align_corners=True)
def forward(self, x):
_, _, _, h, w = x.shape
out = torch.relu(self.conv1(x))
out = self.upsample3d(out, self.num_classes, h, w)
out = torch.relu(self.conv2(out))
out = self.conv3(out)
out = out.squeeze(1)
return out, out
# daily
def get_fine_tuning_parameters(model, ft_begin_index):
if ft_begin_index == 0:
return model.parameters()
ft_module_names = []
for i in range(ft_begin_index, 5):
ft_module_names.append('layer{}'.format(i))
ft_module_names.append('fc')
parameters = []
for k, v in model.named_parameters():
for ft_module in ft_module_names:
if ft_module in k:
parameters.append({'params': v})
break
else:
parameters.append({'params': v, 'lr': 0.0})
return parameters
def downsample_basic_block(x, planes, stride):
out = F.avg_pool3d(x, kernel_size=1, stride=stride)
zero_pads = torch.Tensor(
out.size(0), planes - out.size(1), out.size(2), out.size(3),
out.size(4)).zero_()
if isinstance(out.data, torch.cuda.FloatTensor):
zero_pads = zero_pads.cuda()
out = Variable(torch.cat([out.data, zero_pads], dim=1))
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv3d(inplanes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm3d(planes)
self.conv2 = nn.Conv3d(
planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn2 = nn.BatchNorm3d(planes)
self.conv3 = nn.Conv3d(planes, planes * 4, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm3d(planes * 4)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self,
block,
layers,
opt,
# sample_size, # Height and width of inputs es. 112 x 112
sample_duration, # Temporal duration of inputs, es. 16
# shortcut_type='B',
# num_classes=400
):
super(ResNet, self).__init__()
self.inplanes = 64
kernel0 = min(7, sample_duration)
padding0 = int(kernel0 / 2)
self.conv1 = nn.Conv3d(
# opt.sample_duration,
opt.sample_channels,
64,
kernel_size=(kernel0, 3, 3), # orig: 7
stride=(1, 1, 1), # orig: (1, 2, 2)
padding=(padding0, 1, 1), # orig: (3, 3, 3)
bias=False)
self.bn1 = nn.BatchNorm3d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool3d(kernel_size=(3, 3, 3), stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0], opt.resnet_shortcut)
self.layer2 = self._make_layer(block, 128, layers[1], opt.resnet_shortcut, stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], opt.resnet_shortcut, stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], opt.resnet_shortcut, stride=2)
# last_duration = int(math.ceil(sample_duration / 16))
# last_size = int(math.ceil(sample_size / 32))
# self.avgpool = nn.AvgPool3d(
# (last_duration, last_size, last_size), stride=1)
# self.fc = nn.Linear(512 * block.expansion, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv3d):
m.weight = nn.init.kaiming_normal_(m.weight, mode='fan_out')
elif isinstance(m, nn.BatchNorm3d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def _make_layer(self, block, planes, blocks, shortcut_type, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
if shortcut_type == 'A':
downsample = partial(
downsample_basic_block,
planes=planes * block.expansion,
stride=stride)
else:
downsample = nn.Sequential(
nn.Conv3d(
self.inplanes,
planes * block.expansion,
kernel_size=1,
stride=stride,
bias=False), nn.BatchNorm3d(planes * block.expansion))
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
low_level_feat1 = x
x = self.layer1(x)
low_level_feat2 = x
x = self.layer2(x)
low_level_feat3 = x
x = self.layer3(x)
low_level_feat4 = x
x = self.layer4(x)
low_level_feat5 = x
return [low_level_feat1, low_level_feat2, low_level_feat3, low_level_feat4, low_level_feat5]
# x = self.avgpool(x)
# x = x.view(x.size(0), -1)
# x = self.fc(x)
# return x
def resnet50(opt, sample_duration):
"""Constructs a ResNet-50 model.
"""
model = ResNet(Bottleneck, [3, 4, 6, 3], opt, sample_duration)
return model
class FPN(nn.Module):
def __init__(self, opt, first_batch, sample_duration):
super(FPN, self).__init__()
# self.first_run = True
self.in_planes = 64
self.num_classes = opt.n_classes
model = resnet50(opt, sample_duration)
self.back_bone = nn.DataParallel(model, device_ids=None)
# if opt.pretrain_path:
# print('loading pretrained model {}'.format(opt.pretrain_path))
# pretrain = torch.load(opt.pretrain_path)
# assert opt.arch == pretrain['arch']
#
# model.load_state_dict(pretrain['state_dict'])
#
# if opt.model == 'densenet':
# model.module.classifier = nn.Linear(
# model.module.classifier.in_features, opt.n_finetune_classes)
# model.module.classifier = model.module.classifier.cuda()
# else:
# model.module.fc = nn.Linear(model.module.fc.in_features,
# opt.n_finetune_classes)
# model.module.fc = model.module.fc.cuda()
#
# parameters = get_fine_tuning_parameters(model, opt.ft_begin_index)
# self.back_bone, parameters = generate_model(opt, sample_duration)
# Top layer
self.toplayer = None # nn.Conv3d(512, 256, kernel_size=1, stride=1, padding=0) # Reduce channels
# Lateral layers
self.latlayer1 = None # nn.Conv3d(256, 256, kernel_size=1, stride=1, padding=0
self.latlayer2 = None # nn.Conv3d(128, 256, kernel_size=1, stride=1, padding=0)
self.latlayer3 = None # nn.Conv3d(64, 256, kernel_size=1, stride=1, padding=0)
# Addendum layers to reduce channels before sum
self.sumlayer1 = None
self.sumlayer2 = None
self.sumlayer3 = None
# Semantic branch
self.conv2_3d_p5 = None
self.conv2_3d_p4 = None
self.conv2_3d_p3 = None
self.conv2_3d_p2 = None
self.iam_joking(first_batch, not opt.no_cuda)
self.semantic_branch_2d = nn.Conv2d(256, 128, kernel_size=3, stride=1, padding=1)
self.conv2_2d = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)
# self.conv3 = nn.Conv2d(128, self.num_classes, kernel_size=1, stride=1, padding=0)
self.conv3 = nn.Conv2d(128, 64, kernel_size=1, stride=1, padding=0)
# opt.sample_duration is the number of samples taken from the time series
self.conv4out = nn.Conv2d(64, opt.sample_duration, kernel_size=3, stride=1, padding=1)
self.conv5out = nn.Conv2d(opt.sample_duration, self.num_classes, kernel_size=3, stride=1, padding=1)
# num_groups, num_channels
self.gn1 = nn.GroupNorm(128, 128)
self.gn2 = nn.GroupNorm(256, 256)
def iam_joking(self, x, use_cuda):
low_level_features = self.back_bone(x)
c1 = low_level_features[0]
c2 = low_level_features[1]
c3 = low_level_features[2]
c4 = low_level_features[3]
c5 = low_level_features[4]
# Top layer
self.toplayer = nn.Conv3d(c5.size()[1], c5.size()[1], kernel_size=1, stride=1, padding=0) # Reduce channels
# Lateral layers
self.latlayer1 = nn.Conv3d(c4.size()[1], c4.size()[1], kernel_size=1, stride=1, padding=0)
self.latlayer2 = nn.Conv3d(c3.size()[1], c3.size()[1], kernel_size=1, stride=1, padding=0)
self.latlayer3 = nn.Conv3d(c2.size()[1], c2.size()[1], kernel_size=1, stride=1, padding=0)
# Addendum layers to reduce channels
self.sumlayer1 = nn.Conv3d(c5.size()[1], c4.size()[1], kernel_size=1, stride=1, padding=0) # Reduce channels
self.sumlayer2 = nn.Conv3d(c4.size()[1], c3.size()[1], kernel_size=1, stride=1, padding=0)
self.sumlayer3 = nn.Conv3d(c3.size()[1], c2.size()[1], kernel_size=1, stride=1, padding=0)
if use_cuda:
self.toplayer = self.toplayer.cuda()
self.latlayer1 = self.latlayer1.cuda()
self.latlayer2 = self.latlayer2.cuda()
self.latlayer3 = self.latlayer3.cuda()
self.sumlayer1 = self.sumlayer1.cuda()
self.sumlayer2 = self.sumlayer2.cuda()
self.sumlayer3 = self.sumlayer3.cuda()
# Top-down
p5 = self.toplayer(c5)
p4 = self._upsample_add(self.sumlayer1(p5), self.latlayer1(c4))
p3 = self._upsample_add(self.sumlayer2(p4), self.latlayer2(c3))
p2 = self._upsample_add(self.sumlayer3(p3), self.latlayer3(c2))
# calculate the sizes so that dimension c becomes 1
self.conv2_3d_p5 = nn.Conv3d(p5.size()[1], 256, kernel_size=(p5.size()[2] + 2, 3, 3), stride=1, padding=1)
self.conv2_3d_p4 = nn.Conv3d(p4.size()[1], 256, kernel_size=(p4.size()[2] + 2, 3, 3), stride=1, padding=1)
self.conv2_3d_p3 = nn.Conv3d(p3.size()[1], 128, kernel_size=(p3.size()[2] + 2, 3, 3), stride=1, padding=1)
self.conv2_3d_p2 = nn.Conv3d(p2.size()[1], 128, kernel_size=(p2.size()[2] + 2, 3, 3), stride=1, padding=1)
def _upsample3d(self, x, d, h, w):
return F.interpolate(x, size=(d, h, w), mode='trilinear', align_corners=True)
def _upsample2d(self, x, h, w):
return F.interpolate(x, size=(h, w), mode='bilinear', align_corners=True)
def _make_layer(self, Bottleneck, planes, num_blocks, stride):
strides = [stride] + [1] * (num_blocks - 1)
layers = []
for stride in strides:
layers.append(Bottleneck(self.in_planes, planes, stride))
self.in_planes = planes * Bottleneck.expansion
return nn.Sequential(*layers)
def _upsample_add(self, x, y):
'''Upsample and add two feature maps.
Args:
x: (Variable) top feature map to be upsampled.
y: (Variable) lateral feature map.
Returns:
(Variable) added feature map.
Note in PyTorch, when input size is odd, the upsampled feature map
with `F.upsample(..., scale_factor=2, mode='nearest')`
maybe not equal to the lateral feature map size.
e.g.
original input size: [N,_,15,15] ->
conv2d feature map size: [N,_,8,8] ->
upsampled feature map size: [N,_,16,16]
So we choose bilinear upsample which supports arbitrary output sizes.
'''
_, _, D, H, W = y.size()
return F.interpolate(x, size=(D, H, W), mode='trilinear', align_corners=True) + y
def forward(self, x):
# Bottom-up using backbone
low_level_features = self.back_bone(x)
# c1 = low_level_features[0]
c2 = low_level_features[1]
c3 = low_level_features[2]
c4 = low_level_features[3]
c5 = low_level_features[4]
# Top-down
p5 = self.toplayer(c5)
p4 = self._upsample_add(
torch.relu(self.sumlayer1(p5)), torch.relu(self.latlayer1(c4))) # p5 interpolation to the size of c4
p3 = self._upsample_add(
torch.relu(self.sumlayer2(p4)), torch.relu(self.latlayer2(c3)))
p2 = self._upsample_add(
torch.relu(self.sumlayer3(p3)), torch.relu(self.latlayer3(c2)))
# Smooth
# p4 = F.relu(self.smooth1(p4))
# p3 = F.relu(self.smooth2(p3))
# p2 = F.relu(self.smooth3(p2))
# Semantic
_, _, _, h, w = p2.size()
# 256->256
s5 = self.conv2_3d_p5(p5)
s5 = torch.squeeze(s5, 2) # squeeze only dim 2 to avoid to remove the batch dimension
s5 = self._upsample2d(torch.relu(self.gn2(s5)), h, w)
# 256->256 [32, 256, 24, 24]
s5 = self._upsample2d(torch.relu(self.gn2(self.conv2_2d(s5))), h, w)
# 256->128 [32, 128, 24, 24]
s5 = self._upsample2d(torch.relu(self.gn1(self.semantic_branch_2d(s5))), h, w)
# 256->256 p4:[32, 256, 4, 6, 6] -> s4:[32, 256, 1, 6, 6]
s4 = self.conv2_3d_p4(p4)
s4 = torch.squeeze(s4, 2) # s4:[32, 256, 6, 6]
s4 = self._upsample2d(torch.relu(self.gn2(s4)), h, w) # s4:[32, 256, 24, 24]
# 256->128 s4:[32, 128, 24, 24]
s4 = self._upsample2d(torch.relu(self.gn1(self.semantic_branch_2d(s4))), h, w)
# 256->128
s3 = self.conv2_3d_p3(p3)
s3 = torch.squeeze(s3, 2)
s3 = self._upsample2d(torch.relu(self.gn1(s3)), h, w)
s2 = self.conv2_3d_p2(p2)
s2 = torch.squeeze(s2, 2)
s2 = self._upsample2d(torch.relu(self.gn1(s2)), h, w)
out = self._upsample2d(self.conv3(s2 + s3 + s4 + s5), 2 * h, 2 * w)
# introducing MSELoss on NDVI signal
out_cai = torch.sigmoid(self.conv4out(out)) # for Class Activation Interval
out_cls = self.conv5out(out_cai) # for Classification
return out_cai, out_cls
def ids_to_labels(dataloader, pred_labels):
new = np.zeros(pred_labels.shape, int)
for cl, i in zip(dataloader.dataset.classids, range(len(dataloader.dataset.classids))):
if type(cl) is list:
new[pred_labels == i] = cl[0]
# for c in cl:
# new[pred_labels == c] = i
else:
new[pred_labels == i] = cl
return new
def resume(path, model, optimizer):
if torch.cuda.is_available():
snapshot = torch.load(path)
else:
snapshot = torch.load(path, map_location="cpu")
print("Loaded snapshot from", path)
model_state = snapshot.pop('model_state', snapshot)
optimizer_state = snapshot.pop('optimizer_state', None)
if model is not None and model_state is not None:
print("loading model...")
model.load_state_dict(model_state)
if optimizer is not None and optimizer_state is not None:
optimizer.load_state_dict(optimizer_state)
return snapshot
def read(file):
with rasterio.open(file) as src:
return src.read(), src.profile
#@title Setup Parameters
opt = type('test', (), {})()
opt.gpu_id = ''
opt.no_cuda = True
opt.n_classes = 8
opt.model_depth = 50
opt.batch_size = 1
opt.sample_duration = 71
opt.sample_channels = 9
opt.win_size = 5
opt.model = 'resnet'
opt.resnet_shortcut = 'B'
# opt.n_epochs = 20
# opt.learning_rate = 0.01
# opt.loss = 'ce'
# opt.optimizer = 'sgd'
# opt.export_only
# opt.test_tile = 'test_small.tileids'
opt.result_path = 'results'
input_data_folder = 'demo_data/lombardia' #@param {type:"string"}
opt.root_path = [input_data_folder]
opt.years = ['2019']
opt.classes_path = 'demo_data/classes-newmapping.txt'
opt.resume_path = 'demo_data'
opt.pretrain_path = ''
opt.workers = 1
os.environ['CUDA_VISIBLE_DEVICES'] = opt.gpu_id
if opt.no_cuda:
os.environ['CUDA_VISIBLE_DEVICES'] = ""
classes_color_map = np.array([[255/255.0, 255/255.0, 255/255.0],
[150/255.0, 150/255.0, 150/255.0], # Gray - 1 - Unknow cropland
[255/255.0, 0, 0], # Red - 2 - Other cereals
[161/255.0, 0, 0],
[0., 255/255.0, 0], # Green - 4 - Woods and other tree crops
[255/255.0, 240/255.0, 0],
[130/255.0, 120/255.0, 240/255.0],
[255/255.0, 136/255.0, 0], # Orange - 7 - Forage
[250, 190, 190],
[255/255.0, 255/255.0, 0], # Yellow - 9 - Corn
[0, 250, 154],
[64, 224, 208],
[0/255.0, 255/255.0, 255/255.0], # Turchese - 12 - Rice
[0.58823529, 0.39215686, 0.39215686],
[139/255, 35/255, 35/255],
[139/255, 35/255, 35/255],
[139/255, 35/255, 35/255],
[0, 0, 0], # Black - 17 - No Arable land
])
color_labels = [classes_color_map[0], classes_color_map[1], classes_color_map[2], classes_color_map[4],
classes_color_map[7], classes_color_map[9], classes_color_map[12], classes_color_map[17]]
labels_map = ['Unknown', 'Unknown cropland', 'Other cereals', 'Woods and other tree crops', 'Forage', 'Corn', 'Rice',
'No arable land']