Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import librosa | |
import torchaudio | |
import random | |
import json | |
from muq import MuQMuLan, MuQ | |
from mutagen.mp3 import MP3 | |
import os | |
import numpy as np | |
from huggingface_hub import hf_hub_download | |
from hydra.utils import instantiate | |
from omegaconf import OmegaConf | |
from safetensors.torch import load_file | |
from diffrhythm.model import DiT, CFM | |
def vae_sample(mean, scale): | |
stdev = torch.nn.functional.softplus(scale) + 1e-4 | |
var = stdev * stdev | |
logvar = torch.log(var) | |
latents = torch.randn_like(mean) * stdev + mean | |
kl = (mean * mean + var - logvar - 1).sum(1).mean() | |
return latents, kl | |
def normalize_audio(y, target_dbfs=0): | |
max_amplitude = torch.max(torch.abs(y)) | |
target_amplitude = 10.0**(target_dbfs / 20.0) | |
scale_factor = target_amplitude / max_amplitude | |
normalized_audio = y * scale_factor | |
return normalized_audio | |
def set_audio_channels(audio, target_channels): | |
if target_channels == 1: | |
# Convert to mono | |
audio = audio.mean(1, keepdim=True) | |
elif target_channels == 2: | |
# Convert to stereo | |
if audio.shape[1] == 1: | |
audio = audio.repeat(1, 2, 1) | |
elif audio.shape[1] > 2: | |
audio = audio[:, :2, :] | |
return audio | |
class PadCrop(torch.nn.Module): | |
def __init__(self, n_samples, randomize=True): | |
super().__init__() | |
self.n_samples = n_samples | |
self.randomize = randomize | |
def __call__(self, signal): | |
n, s = signal.shape | |
start = 0 if (not self.randomize) else torch.randint(0, max(0, s - self.n_samples) + 1, []).item() | |
end = start + self.n_samples | |
output = signal.new_zeros([n, self.n_samples]) | |
output[:, :min(s, self.n_samples)] = signal[:, start:end] | |
return output | |
def prepare_audio(audio, in_sr, target_sr, target_length, target_channels, device): | |
audio = audio.to(device) | |
if in_sr != target_sr: | |
resample_tf = torchaudio.transforms.Resample(in_sr, target_sr).to(device) | |
audio = resample_tf(audio) | |
if target_length is None: | |
target_length = audio.shape[-1] | |
audio = PadCrop(target_length, randomize=False)(audio) | |
# Add batch dimension | |
if audio.dim() == 1: | |
audio = audio.unsqueeze(0).unsqueeze(0) | |
elif audio.dim() == 2: | |
audio = audio.unsqueeze(0) | |
audio = set_audio_channels(audio, target_channels) | |
return audio | |
def decode_audio(latents, vae_model, chunked=False, overlap=32, chunk_size=128): | |
downsampling_ratio = 2048 | |
io_channels = 2 | |
if not chunked: | |
return vae_model.decode_export(latents) | |
else: | |
# chunked decoding | |
hop_size = chunk_size - overlap | |
total_size = latents.shape[2] | |
batch_size = latents.shape[0] | |
chunks = [] | |
i = 0 | |
for i in range(0, total_size - chunk_size + 1, hop_size): | |
chunk = latents[:, :, i : i + chunk_size] | |
chunks.append(chunk) | |
if i + chunk_size != total_size: | |
# Final chunk | |
chunk = latents[:, :, -chunk_size:] | |
chunks.append(chunk) | |
chunks = torch.stack(chunks) | |
num_chunks = chunks.shape[0] | |
# samples_per_latent is just the downsampling ratio | |
samples_per_latent = downsampling_ratio | |
# Create an empty waveform, we will populate it with chunks as decode them | |
y_size = total_size * samples_per_latent | |
y_final = torch.zeros((batch_size, io_channels, y_size)).to(latents.device) | |
for i in range(num_chunks): | |
x_chunk = chunks[i, :] | |
# decode the chunk | |
y_chunk = vae_model.decode_export(x_chunk) | |
# figure out where to put the audio along the time domain | |
if i == num_chunks - 1: | |
# final chunk always goes at the end | |
t_end = y_size | |
t_start = t_end - y_chunk.shape[2] | |
else: | |
t_start = i * hop_size * samples_per_latent | |
t_end = t_start + chunk_size * samples_per_latent | |
# remove the edges of the overlaps | |
ol = (overlap // 2) * samples_per_latent | |
chunk_start = 0 | |
chunk_end = y_chunk.shape[2] | |
if i > 0: | |
# no overlap for the start of the first chunk | |
t_start += ol | |
chunk_start += ol | |
if i < num_chunks - 1: | |
# no overlap for the end of the last chunk | |
t_end -= ol | |
chunk_end -= ol | |
# paste the chunked audio into our y_final output audio | |
y_final[:, :, t_start:t_end] = y_chunk[:, :, chunk_start:chunk_end] | |
return y_final | |
def encode_audio(audio, vae_model, chunked=False, overlap=32, chunk_size=128): | |
downsampling_ratio = 2048 | |
latent_dim = 128 | |
if not chunked: | |
# default behavior. Encode the entire audio in parallel | |
return vae_model.encode_export(audio) | |
else: | |
# CHUNKED ENCODING | |
# samples_per_latent is just the downsampling ratio (which is also the upsampling ratio) | |
samples_per_latent = downsampling_ratio | |
total_size = audio.shape[2] # in samples | |
batch_size = audio.shape[0] | |
chunk_size *= samples_per_latent # converting metric in latents to samples | |
overlap *= samples_per_latent # converting metric in latents to samples | |
hop_size = chunk_size - overlap | |
chunks = [] | |
for i in range(0, total_size - chunk_size + 1, hop_size): | |
chunk = audio[:,:,i:i+chunk_size] | |
chunks.append(chunk) | |
if i+chunk_size != total_size: | |
# Final chunk | |
chunk = audio[:,:,-chunk_size:] | |
chunks.append(chunk) | |
chunks = torch.stack(chunks) | |
num_chunks = chunks.shape[0] | |
# Note: y_size might be a different value from the latent length used in diffusion training | |
# because we can encode audio of varying lengths | |
# However, the audio should've been padded to a multiple of samples_per_latent by now. | |
y_size = total_size // samples_per_latent | |
# Create an empty latent, we will populate it with chunks as we encode them | |
y_final = torch.zeros((batch_size,latent_dim,y_size)).to(audio.device) | |
for i in range(num_chunks): | |
x_chunk = chunks[i,:] | |
# encode the chunk | |
y_chunk = vae_model.encode_export(x_chunk) | |
# figure out where to put the audio along the time domain | |
if i == num_chunks-1: | |
# final chunk always goes at the end | |
t_end = y_size | |
t_start = t_end - y_chunk.shape[2] | |
else: | |
t_start = i * hop_size // samples_per_latent | |
t_end = t_start + chunk_size // samples_per_latent | |
# remove the edges of the overlaps | |
ol = overlap//samples_per_latent//2 | |
chunk_start = 0 | |
chunk_end = y_chunk.shape[2] | |
if i > 0: | |
# no overlap for the start of the first chunk | |
t_start += ol | |
chunk_start += ol | |
if i < num_chunks-1: | |
# no overlap for the end of the last chunk | |
t_end -= ol | |
chunk_end -= ol | |
# paste the chunked audio into our y_final output audio | |
y_final[:,:,t_start:t_end] = y_chunk[:,:,chunk_start:chunk_end] | |
return y_final | |
def prepare_model(device): | |
# prepare cfm model | |
dit_ckpt_path = hf_hub_download(repo_id="ASLP-lab/DiffRhythm-1_2", filename="cfm_model.pt") | |
dit_config_path = "./diffrhythm/config/config.json" | |
with open(dit_config_path) as f: | |
model_config = json.load(f) | |
dit_model_cls = DiT | |
cfm = CFM( | |
transformer=dit_model_cls(**model_config["model"], max_frames=2048), | |
num_channels=model_config["model"]['mel_dim'], | |
) | |
cfm = cfm.to(device) | |
cfm = load_checkpoint(cfm, dit_ckpt_path, device=device, use_ema=False) | |
# prepare tokenizer | |
tokenizer = CNENTokenizer() | |
# prepare muq | |
muq = MuQMuLan.from_pretrained("OpenMuQ/MuQ-MuLan-large", cache_dir="./pretrained") | |
muq = muq.to(device).eval() | |
# prepare vae | |
vae_ckpt_path = hf_hub_download(repo_id="ASLP-lab/DiffRhythm-vae", filename="vae_model.pt") | |
vae = torch.jit.load(vae_ckpt_path, map_location="cpu").to(device) | |
# prepare eval model | |
train_config = OmegaConf.load("./pretrained/eval.yaml") | |
checkpoint_path = "./pretrained/eval.safetensors" | |
eval_model = instantiate(train_config.generator).to(device).eval() | |
state_dict = load_file(checkpoint_path, device="cpu") | |
eval_model.load_state_dict(state_dict) | |
eval_muq = MuQ.from_pretrained("OpenMuQ/MuQ-large-msd-iter") | |
eval_muq = eval_muq.to(device).eval() | |
return cfm, tokenizer, muq, vae, eval_model, eval_muq | |
# for song edit, will be added in the future | |
def get_reference_latent(device, max_frames, edit, pred_segments, ref_song, vae_model): | |
sampling_rate = 44100 | |
downsample_rate = 2048 | |
io_channels = 2 | |
if edit: | |
input_audio, in_sr = torchaudio.load(ref_song) | |
input_audio = prepare_audio(input_audio, in_sr=in_sr, target_sr=sampling_rate, target_length=None, target_channels=io_channels, device=device) | |
input_audio = normalize_audio(input_audio, -6) | |
with torch.no_grad(): | |
latent = encode_audio(input_audio, vae_model, chunked=True) # [b d t] | |
mean, scale = latent.chunk(2, dim=1) | |
prompt, _ = vae_sample(mean, scale) | |
prompt = prompt.transpose(1, 2) # [b t d] | |
pred_segments = json.loads(pred_segments) | |
# import pdb; pdb.set_trace() | |
pred_frames = [] | |
for st, et in pred_segments: | |
sf = 0 if st == -1 else int(st * sampling_rate / downsample_rate) | |
# if st == -1: | |
# sf = 0 | |
# else: | |
# sf = int(st * sampling_rate / downsample_rate ) | |
ef = max_frames if et == -1 else int(et * sampling_rate / downsample_rate) | |
# if et == -1: | |
# ef = max_frames | |
# else: | |
# ef = int(et * sampling_rate / downsample_rate ) | |
pred_frames.append((sf, ef)) | |
# import pdb; pdb.set_trace() | |
return prompt, pred_frames | |
else: | |
prompt = torch.zeros(1, max_frames, 64).to(device) | |
pred_frames = [(0, max_frames)] | |
return prompt, pred_frames | |
def get_negative_style_prompt(device): | |
file_path = "./src/negative_prompt.npy" | |
vocal_stlye = np.load(file_path) | |
vocal_stlye = torch.from_numpy(vocal_stlye).to(device) # [1, 512] | |
vocal_stlye = vocal_stlye.half() | |
return vocal_stlye | |
def eval_song(eval_model, eval_muq, songs): | |
resampled_songs = [torchaudio.functional.resample(song.mean(dim=0, keepdim=True), 44100, 24000) for song in songs] | |
ssl_list = [] | |
for i in range(len(resampled_songs)): | |
output = eval_muq(resampled_songs[i], output_hidden_states=True) | |
muq_ssl = output["hidden_states"][6] | |
ssl_list.append(muq_ssl.squeeze(0)) | |
ssl = torch.stack(ssl_list) | |
scores_g = eval_model(ssl) | |
score = torch.mean(scores_g, dim=1) | |
idx = score.argmax(dim=0) | |
return songs[idx] | |
def get_audio_style_prompt(model, wav_path): | |
vocal_flag = False | |
mulan = model | |
audio, _ = librosa.load(wav_path, sr=24000) | |
audio_len = librosa.get_duration(y=audio, sr=24000) | |
if audio_len <= 1: | |
vocal_flag = True | |
if audio_len > 10: | |
start_time = int(audio_len // 2 - 5) | |
wav = audio[start_time*24000:(start_time+10)*24000] | |
else: | |
wav = audio | |
wav = torch.tensor(wav).unsqueeze(0).to(model.device) | |
with torch.no_grad(): | |
audio_emb = mulan(wavs = wav) # [1, 512] | |
audio_emb = audio_emb.half() | |
return audio_emb, vocal_flag | |
def get_text_style_prompt(model, text_prompt): | |
mulan = model | |
with torch.no_grad(): | |
text_emb = mulan(texts = text_prompt) # [1, 512] | |
text_emb = text_emb.half() | |
return text_emb | |
def get_style_prompt(model, wav_path=None, prompt=None): | |
mulan = model | |
if prompt is not None: | |
return mulan(texts=prompt).half() | |
ext = os.path.splitext(wav_path)[-1].lower() | |
if ext == ".mp3": | |
meta = MP3(wav_path) | |
audio_len = meta.info.length | |
elif ext in [".wav", ".flac"]: | |
audio_len = librosa.get_duration(path=wav_path) | |
else: | |
raise ValueError("Unsupported file format: {}".format(ext)) | |
if audio_len < 10: | |
print( | |
f"Warning: The audio file {wav_path} is too short ({audio_len:.2f} seconds). Expected at least 10 seconds." | |
) | |
assert audio_len >= 10 | |
mid_time = audio_len // 2 | |
start_time = mid_time - 5 | |
wav, _ = librosa.load(wav_path, sr=24000, offset=start_time, duration=10) | |
wav = torch.tensor(wav).unsqueeze(0).to(model.device) | |
with torch.no_grad(): | |
audio_emb = mulan(wavs=wav) # [1, 512] | |
audio_emb = audio_emb | |
audio_emb = audio_emb.half() | |
return audio_emb | |
def parse_lyrics(lyrics: str): | |
lyrics_with_time = [] | |
lyrics = lyrics.strip() | |
for line in lyrics.split("\n"): | |
try: | |
time, lyric = line[1:9], line[10:] | |
lyric = lyric.strip() | |
mins, secs = time.split(":") | |
secs = int(mins) * 60 + float(secs) | |
lyrics_with_time.append((secs, lyric)) | |
except: | |
continue | |
return lyrics_with_time | |
class CNENTokenizer: | |
def __init__(self): | |
with open("./diffrhythm/g2p/g2p/vocab.json", "r", encoding='utf-8') as file: | |
self.phone2id: dict = json.load(file)["vocab"] | |
self.id2phone = {v: k for (k, v) in self.phone2id.items()} | |
from diffrhythm.g2p.g2p_generation import chn_eng_g2p | |
self.tokenizer = chn_eng_g2p | |
def encode(self, text): | |
phone, token = self.tokenizer(text) | |
token = [x + 1 for x in token] | |
return token | |
def decode(self, token): | |
return "|".join([self.id2phone[x - 1] for x in token]) | |
def get_lrc_token(max_frames, text, tokenizer, device): | |
lyrics_shift = 0 | |
sampling_rate = 44100 | |
downsample_rate = 2048 | |
max_secs = max_frames / (sampling_rate / downsample_rate) | |
comma_token_id = 1 | |
period_token_id = 2 | |
lrc_with_time = parse_lyrics(text) | |
modified_lrc_with_time = [] | |
for i in range(len(lrc_with_time)): | |
time, line = lrc_with_time[i] | |
line_token = tokenizer.encode(line) | |
modified_lrc_with_time.append((time, line_token)) | |
lrc_with_time = modified_lrc_with_time | |
lrc_with_time = [ | |
(time_start, line) | |
for (time_start, line) in lrc_with_time | |
if time_start < max_secs | |
] | |
if max_frames == 2048: | |
lrc_with_time = lrc_with_time[:-1] if len(lrc_with_time) >= 1 else lrc_with_time | |
normalized_start_time = 0.0 | |
lrc = torch.zeros((max_frames,), dtype=torch.long) | |
tokens_count = 0 | |
last_end_pos = 0 | |
for time_start, line in lrc_with_time: | |
tokens = [ | |
token if token != period_token_id else comma_token_id for token in line | |
] + [period_token_id] | |
tokens = torch.tensor(tokens, dtype=torch.long) | |
num_tokens = tokens.shape[0] | |
gt_frame_start = int(time_start * sampling_rate / downsample_rate) | |
frame_shift = random.randint(int(-lyrics_shift), int(lyrics_shift)) | |
frame_start = max(gt_frame_start - frame_shift, last_end_pos) | |
frame_len = min(num_tokens, max_frames - frame_start) | |
lrc[frame_start : frame_start + frame_len] = tokens[:frame_len] | |
tokens_count += num_tokens | |
last_end_pos = frame_start + frame_len | |
lrc_emb = lrc.unsqueeze(0).to(device) | |
normalized_start_time = torch.tensor(normalized_start_time).unsqueeze(0).to(device) | |
normalized_start_time = normalized_start_time.half() | |
return lrc_emb, normalized_start_time | |
def load_checkpoint(model, ckpt_path, device, use_ema=True): | |
model = model.half() | |
ckpt_type = ckpt_path.split(".")[-1] | |
if ckpt_type == "safetensors": | |
from safetensors.torch import load_file | |
checkpoint = load_file(ckpt_path) | |
else: | |
checkpoint = torch.load(ckpt_path, weights_only=True) | |
if use_ema: | |
if ckpt_type == "safetensors": | |
checkpoint = {"ema_model_state_dict": checkpoint} | |
checkpoint["model_state_dict"] = { | |
k.replace("ema_model.", ""): v | |
for k, v in checkpoint["ema_model_state_dict"].items() | |
if k not in ["initted", "step"] | |
} | |
model.load_state_dict(checkpoint["model_state_dict"], strict=False) | |
else: | |
if ckpt_type == "safetensors": | |
checkpoint = {"model_state_dict": checkpoint} | |
model.load_state_dict(checkpoint["model_state_dict"], strict=False) | |
return model.to(device) | |