ing0's picture
v1.2
f5b749d
import torch
import torchaudio
from einops import rearrange
import argparse
import os
import time
import random
import torch
import torchaudio
import numpy as np
from einops import rearrange
import io
import pydub
from diffrhythm.infer.infer_utils import (
decode_audio,
get_lrc_token,
get_negative_style_prompt,
get_reference_latent,
get_style_prompt,
prepare_model,
eval_song,
)
def inference(
cfm_model,
vae_model,
eval_model,
eval_muq,
cond,
text,
duration,
style_prompt,
negative_style_prompt,
steps,
cfg_strength,
sway_sampling_coef,
start_time,
file_type,
vocal_flag,
odeint_method,
pred_frames,
batch_infer_num,
chunked=True,
):
with torch.inference_mode():
latents, _ = cfm_model.sample(
cond=cond,
text=text,
duration=duration,
style_prompt=style_prompt,
negative_style_prompt=negative_style_prompt,
steps=steps,
cfg_strength=cfg_strength,
sway_sampling_coef=sway_sampling_coef,
start_time=start_time,
vocal_flag=vocal_flag,
odeint_method=odeint_method,
latent_pred_segments=pred_frames,
batch_infer_num=batch_infer_num
)
outputs = []
for latent in latents:
latent = latent.to(torch.float32)
latent = latent.transpose(1, 2) # [b d t]
output = decode_audio(latent, vae_model, chunked=chunked)
# Rearrange audio batch to a single sequence
output = rearrange(output, "b d n -> d (b n)")
outputs.append(output)
if batch_infer_num > 1:
generated_song = eval_song(eval_model, eval_muq, outputs)
else:
generated_song = outputs[0]
output_tensor = generated_song.to(torch.float32).div(torch.max(torch.abs(output))).clamp(-1, 1).cpu()
output_np = output_tensor.numpy().T.astype(np.float32)
if file_type == 'wav':
return (44100, output_np)
else:
buffer = io.BytesIO()
output_np = np.int16(output_np * 2**15)
song = pydub.AudioSegment(output_np.tobytes(), frame_rate=44100, sample_width=2, channels=2)
if file_type == 'mp3':
song.export(buffer, format="mp3", bitrate="320k")
else:
song.export(buffer, format="ogg", bitrate="320k")
return buffer.getvalue()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--lrc-path",
type=str,
help="lyrics of target song",
) # lyrics of target song
parser.add_argument(
"--ref-prompt",
type=str,
help="reference prompt as style prompt for target song",
required=False,
) # reference prompt as style prompt for target song
parser.add_argument(
"--ref-audio-path",
type=str,
help="reference audio as style prompt for target song",
required=False,
) # reference audio as style prompt for target song
parser.add_argument(
"--chunked",
action="store_true",
help="whether to use chunked decoding",
) # whether to use chunked decoding
parser.add_argument(
"--audio-length",
type=int,
default=95,
choices=[95, 285],
help="length of generated song",
) # length of target song
parser.add_argument(
"--repo-id", type=str, default="ASLP-lab/DiffRhythm-base", help="target model"
)
parser.add_argument(
"--output-dir",
type=str,
default="infer/example/output",
help="output directory fo generated song",
) # output directory of target song
parser.add_argument(
"--edit",
action="store_true",
help="whether to open edit mode",
) # edit flag
parser.add_argument(
"--ref-song",
type=str,
required=False,
help="reference prompt as latent prompt for editing",
) # reference prompt as latent prompt for editing
parser.add_argument(
"--edit-segments",
type=str,
required=False,
help="edit segments o target song",
) # edit segments o target song
args = parser.parse_args()
assert (
args.ref_prompt or args.ref_audio_path
), "either ref_prompt or ref_audio_path should be provided"
assert not (
args.ref_prompt and args.ref_audio_path
), "only one of them should be provided"
if args.edit:
assert (
args.ref_song and args.edit_segments
), "reference song and edit segments should be provided for editing"
device = "cpu"
if torch.cuda.is_available():
device = "cuda"
elif torch.mps.is_available():
device = "mps"
audio_length = args.audio_length
if audio_length == 95:
max_frames = 2048
elif audio_length == 285:
max_frames = 6144
cfm, tokenizer, muq, vae, eval_model, eval_muq = prepare_model(max_frames, device, repo_id=args.repo_id)
if args.lrc_path:
with open(args.lrc_path, "r", encoding='utf-8') as f:
lrc = f.read()
else:
lrc = ""
lrc_prompt, start_time = get_lrc_token(max_frames, lrc, tokenizer, device)
if args.ref_audio_path:
style_prompt = get_style_prompt(muq, args.ref_audio_path)
else:
style_prompt = get_style_prompt(muq, prompt=args.ref_prompt)
negative_style_prompt = get_negative_style_prompt(device)
latent_prompt, pred_frames = get_reference_latent(device, max_frames, args.edit, args.edit_segments, args.ref_song, vae)
s_t = time.time()
generated_songs = inference(
cfm_model=cfm,
vae_model=vae,
cond=latent_prompt,
text=lrc_prompt,
duration=max_frames,
style_prompt=style_prompt,
negative_style_prompt=negative_style_prompt,
start_time=start_time,
pred_frames=pred_frames,
chunked=args.chunked,
)
generated_song = eval_song(eval_model, eval_muq, generated_songs)
# Peak normalize, clip, convert to int16, and save to file
generated_song = (
generated_song.to(torch.float32)
.div(torch.max(torch.abs(generated_song)))
.clamp(-1, 1)
.mul(32767)
.to(torch.int16)
.cpu()
)
e_t = time.time() - s_t
print(f"inference cost {e_t:.2f} seconds")
output_dir = args.output_dir
os.makedirs(output_dir, exist_ok=True)
output_path = os.path.join(output_dir, "output.wav")
torchaudio.save(output_path, generated_song, sample_rate=44100)