Spaces:
Runtime error
Runtime error
File size: 6,158 Bytes
a5e5bde 33d0c27 ee56cf8 a5e5bde d0d0416 0d1bfaa a5e5bde ee56cf8 0d1bfaa ee56cf8 0d1bfaa ee56cf8 33d0c27 a5e5bde ee56cf8 a5e5bde ee56cf8 a5e5bde d0d0416 a5e5bde 33d0c27 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
import gradio as gr
import pandas as pd
import plotly.graph_objects as go
from plotly.subplots import make_subplots
from rl_agent.env import Environment
from rl_agent.policy import Policy
from rl_agent.utils import myOptimizer
import torch
from collections import OrderedDict
from tqdm import tqdm
import datetime
def get_time():
return datetime.datetime.now().time()
def init_rl_agent(train, test):
date_split = '01.09.2022 00:00:00.000 GMT-0500'
learning_rate = 0.001
first_momentum = 0.0
second_momentum = 0.0001
transaction_cost = 0.0001
adaptation_rate = 0.01
state_size = 15
equity = 1.0
agent = Policy(input_channels=state_size)
optimizer = myOptimizer(learning_rate, first_momentum, second_momentum, adaptation_rate, transaction_cost)
history = []
for i in range(1, state_size):
c = train.iloc[i, :]['Close'] - train.iloc[i - 1, :]['Close']
history.append(c)
env = Environment(train, history=history, state_size=state_size)
observation = env.reset()
return env, agent, optimizer, state_size, observation, date_split, equity
def make_prediction(env, agent, optimizer, state_size, observation, data, date_split, equity):
model_gradients_history = dict()
checkpoint = OrderedDict()
for name, param in agent.named_parameters():
model_gradients_history.update({name: torch.zeros_like(param)})
for i in tqdm(range(state_size, len(data[:date_split]))):
observation = torch.as_tensor(observation).float()
action = agent(observation)
observation, reward, _ = env.step(action.data.to("cpu").numpy())
action.backward()
for name, param in agent.named_parameters():
grad_n = param.grad
param = param + optimizer.step(grad_n, reward, observation[-1], model_gradients_history[name])
checkpoint[name] = param
model_gradients_history.update({name: grad_n})
if i > 10000:
equity += env.profit
optimizer.after_step(reward)
agent.load_state_dict(checkpoint)
counter = 0
start_year, test_year = 2021, 2023
datetime_column = "Date"
df_data = pd.read_csv(f"./data/EURUSD_Candlestick_1_M_BID_01.01.{start_year}-04.02.2023_processed.csv")
df_data[datetime_column] = pd.to_datetime(df_data[datetime_column], format="%Y-%m-%d") # %d.%m.%Y %H:%M:%S.000 GMT%z
# Removing all empty dates
# Build complete timeline from start date to end date
dt_all = pd.date_range(start=df_data[datetime_column].tolist()[0], end=df_data[datetime_column].tolist()[-1])
# Retrieve the dates that ARE in the original dataset
dt_obs = set([d.strftime("%Y-%m-%d") for d in pd.to_datetime(df_data[datetime_column])])
# Define dates with missing values
dt_breaks = [d for d in dt_all.strftime("%Y-%m-%d").tolist() if not d in list(dt_obs)]
df_data_test = df_data[df_data['Date'].dt.year == test_year]
df_data_train = df_data[df_data['Date'].dt.year != test_year]
def trading_plot():
global counter
global df_data_train
if counter < len(df_data_test):
df_data_train = df_data_train.append(df_data_test.iloc[counter])
counter += 1
else:
df_data_train = df_data
fig = make_subplots(rows=2, cols=1, shared_xaxes=True, vertical_spacing=0.02, row_heights=[0.7, 0.3],
subplot_titles=['OHLC chart', ''])
# Plot OHLC on 1st subplot
fig.add_trace(go.Candlestick(x=df_data_train[datetime_column].tolist(),
open=df_data_train["Open"].tolist(), close=df_data_train["Close"].tolist(),
high=df_data_train["High"].tolist(), low=df_data_train["Low"].tolist(),
name=""), row=1, col=1)
# Plot volume trace on 2nd row
colors = ['red' if row['Open'] - row['Close'] >= 0 else 'green' for index, row in df_data_train.iterrows()]
fig.add_trace(go.Bar(x=df_data_train[datetime_column], y=df_data_train['Volume'], name="", marker_color=colors,
hovertemplate="%{x}<br>Volume: %{y}"), row=2, col=1)
# Add chart title and Hide dates with no values and remove rangeslider
fig.update_layout(title="", height=600, showlegend=False,
xaxis_rangeslider_visible=False,
xaxis_rangebreaks=[dict(values=dt_breaks)])
# Update y-axis label
fig.update_yaxes(title_text="Price", row=1, col=1)
fig.update_yaxes(title_text="Volume", row=2, col=1)
fig.update_xaxes(showspikes=True, spikecolor="green", spikesnap="cursor", spikemode="across")
fig.update_yaxes(showspikes=True, spikecolor="orange", spikethickness=2)
fig.update_layout(spikedistance=1000, hoverdistance=100)
fig.layout.xaxis.range = ("2022-12-01", "2023-03-01")
return fig
# The UI of the demo defines here.
with gr.Blocks() as demo:
gr.Markdown("Auto trade bot.")
# dt = gr.Textbox(label="Current time")
# demo.queue().load(get_time, inputs=None, outputs=dt, every=1)
# for plotly it should follow this: https://gradio.app/plot-component-for-maps/
candlestick_plot = gr.Plot().style()
demo.queue().load(trading_plot, [], candlestick_plot, every=1)
with gr.Row():
with gr.Column():
gr.Markdown("User Interactive panel.")
amount = gr.components.Textbox(value="", label="Amount", interactive=True)
with gr.Row():
buy_btn = gr.components.Button("Buy", label="Buy", interactive=True, inputs=[amount])
sell_btn = gr.components.Button("Sell", label="Sell", interactive=True, inputs=[amount])
hold_btn = gr.components.Button("Hold", label="Hold", interactive=True, inputs=[amount])
with gr.Column():
gr.Markdown("Trade bot history.")
df_data_train = pd.DataFrame(columns=["Action", "Amount", "Profit"])
trade_bot_table = gr.Dataframe(df_data_train)
# show trade box history in a table or something
gr.components.Textbox(value="Some history? Need to decide how to show bot history", label="History", interactive=True)
demo.launch()
|