Spaces:
Runtime error
Runtime error
Commit
·
f7ed643
1
Parent(s):
2863f52
add equity
Browse files- rl_agent/env.py +3 -2
- rl_agent/test_env.py +42 -30
rl_agent/env.py
CHANGED
@@ -29,14 +29,15 @@ class Environment:
|
|
29 |
|
30 |
Zt = self.data.iloc[self.t, :]['Close'] - self.data.iloc[(self.t-1), :]['Close']
|
31 |
reward = (self.position_value * Zt) - (self.cost_rate * cost_amount)
|
32 |
-
profit = self.position_value * Zt
|
33 |
-
self.profits += profit
|
34 |
|
35 |
# set next time
|
36 |
self.t += 1
|
37 |
self.position_value = act
|
38 |
|
39 |
self.history.pop(0)
|
|
|
40 |
self.history.append(self.data.iloc[self.t, :]['Close'] - self.data.iloc[(self.t-1), :]['Close']) # the price being traded
|
41 |
|
42 |
self.position_value = self.position_value.item()
|
|
|
29 |
|
30 |
Zt = self.data.iloc[self.t, :]['Close'] - self.data.iloc[(self.t-1), :]['Close']
|
31 |
reward = (self.position_value * Zt) - (self.cost_rate * cost_amount)
|
32 |
+
self.profit = self.position_value * Zt
|
33 |
+
self.profits += self.profit
|
34 |
|
35 |
# set next time
|
36 |
self.t += 1
|
37 |
self.position_value = act
|
38 |
|
39 |
self.history.pop(0)
|
40 |
+
|
41 |
self.history.append(self.data.iloc[self.t, :]['Close'] - self.data.iloc[(self.t-1), :]['Close']) # the price being traded
|
42 |
|
43 |
self.position_value = self.position_value.item()
|
rl_agent/test_env.py
CHANGED
@@ -9,18 +9,26 @@ from collections import OrderedDict
|
|
9 |
|
10 |
import matplotlib.pyplot as plt
|
11 |
|
|
|
|
|
|
|
12 |
if __name__ == "__main__":
|
|
|
13 |
|
14 |
-
data = pd.read_csv('./data/EURUSD_Candlestick_1_M_BID_01.01.2021-04.02.2023.csv')
|
|
|
15 |
# data['Local time'] = pd.to_datetime(data['Local time'])
|
16 |
data = data.set_index('Local time')
|
17 |
print(data.index.min(), data.index.max())
|
18 |
|
19 |
-
date_split = '19.09.2022 17:55:00.000 GMT-0500'
|
|
|
|
|
|
|
|
|
20 |
train = data[:date_split]
|
21 |
test = data[date_split:]
|
22 |
|
23 |
-
initial_money = 10.0
|
24 |
|
25 |
learning_rate = 0.001
|
26 |
first_momentum = 0.0
|
@@ -28,6 +36,7 @@ if __name__ == "__main__":
|
|
28 |
transaction_cost = 0.0001
|
29 |
adaptation_rate = 0.01
|
30 |
state_size = 15
|
|
|
31 |
|
32 |
agent = Policy(input_channels=state_size)
|
33 |
optimizer = myOptimizer(learning_rate, first_momentum, second_momentum, adaptation_rate, transaction_cost)
|
@@ -50,10 +59,8 @@ if __name__ == "__main__":
|
|
50 |
model_gradients_history.update({name: torch.zeros_like(param)})
|
51 |
|
52 |
|
53 |
-
p = []
|
54 |
-
|
55 |
|
56 |
-
for
|
57 |
observation = torch.as_tensor(observation).float()
|
58 |
action = agent(observation)
|
59 |
observation, reward, _ = env.step(action.data.to("cpu").numpy())
|
@@ -69,47 +76,52 @@ if __name__ == "__main__":
|
|
69 |
param = param + optimizer.step(grad_n, reward, observation[-1], model_gradients_history[name])
|
70 |
checkpoint[name] = param
|
71 |
model_gradients_history.update({name: grad_n})
|
72 |
-
|
73 |
-
|
|
|
|
|
|
|
|
|
|
|
74 |
optimizer.after_step(reward)
|
75 |
agent.load_state_dict(checkpoint)
|
76 |
|
77 |
###########
|
78 |
###########
|
79 |
|
80 |
-
history = []
|
81 |
-
for i in range(1, state_size):
|
82 |
-
|
83 |
-
|
84 |
|
85 |
-
env = Environment(test, history=history, state_size=state_size)
|
86 |
-
observation = env.reset()
|
87 |
|
88 |
|
89 |
-
model_gradients_history = dict()
|
90 |
-
checkpoint = OrderedDict()
|
91 |
|
92 |
-
for name, param in agent.named_parameters():
|
93 |
-
|
94 |
|
95 |
-
for _ in range(state_size,
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
|
100 |
|
101 |
|
102 |
|
103 |
-
|
104 |
|
105 |
-
|
106 |
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
|
112 |
-
|
113 |
-
|
114 |
|
115 |
print(env.profits)
|
|
|
9 |
|
10 |
import matplotlib.pyplot as plt
|
11 |
|
12 |
+
from tqdm import tqdm
|
13 |
+
from torch.utils.tensorboard import SummaryWriter
|
14 |
+
|
15 |
if __name__ == "__main__":
|
16 |
+
writer = SummaryWriter('runs/new_data_ex_7')
|
17 |
|
18 |
+
# data = pd.read_csv('./data/EURUSD_Candlestick_1_M_BID_01.01.2021-04.02.2023.csv')
|
19 |
+
data = pd.read_csv('./data/EURUSD_Candlestick_30_M_BID_01.01.2021-04.02.2023.csv')
|
20 |
# data['Local time'] = pd.to_datetime(data['Local time'])
|
21 |
data = data.set_index('Local time')
|
22 |
print(data.index.min(), data.index.max())
|
23 |
|
24 |
+
# date_split = '19.09.2022 17:55:00.000 GMT-0500'
|
25 |
+
# date_split = '25.08.2022 04:30:00.000 GMT-0500' # 30 min
|
26 |
+
|
27 |
+
date_split = '03.02.2023 15:30:00.000 GMT-0600' # 30 min
|
28 |
+
|
29 |
train = data[:date_split]
|
30 |
test = data[date_split:]
|
31 |
|
|
|
32 |
|
33 |
learning_rate = 0.001
|
34 |
first_momentum = 0.0
|
|
|
36 |
transaction_cost = 0.0001
|
37 |
adaptation_rate = 0.01
|
38 |
state_size = 15
|
39 |
+
equity = 1.0
|
40 |
|
41 |
agent = Policy(input_channels=state_size)
|
42 |
optimizer = myOptimizer(learning_rate, first_momentum, second_momentum, adaptation_rate, transaction_cost)
|
|
|
59 |
model_gradients_history.update({name: torch.zeros_like(param)})
|
60 |
|
61 |
|
|
|
|
|
62 |
|
63 |
+
for i in tqdm(range(state_size, len(train))):
|
64 |
observation = torch.as_tensor(observation).float()
|
65 |
action = agent(observation)
|
66 |
observation, reward, _ = env.step(action.data.to("cpu").numpy())
|
|
|
76 |
param = param + optimizer.step(grad_n, reward, observation[-1], model_gradients_history[name])
|
77 |
checkpoint[name] = param
|
78 |
model_gradients_history.update({name: grad_n})
|
79 |
+
|
80 |
+
if i > 10000:
|
81 |
+
equity += env.profit
|
82 |
+
writer.add_scalar('equity', equity, i)
|
83 |
+
else:
|
84 |
+
writer.add_scalar('equity', 1.0, i)
|
85 |
+
|
86 |
optimizer.after_step(reward)
|
87 |
agent.load_state_dict(checkpoint)
|
88 |
|
89 |
###########
|
90 |
###########
|
91 |
|
92 |
+
# history = []
|
93 |
+
# for i in range(1, state_size):
|
94 |
+
# c = test.iloc[i, :]['Close'] - test.iloc[i-1, :]['Close']
|
95 |
+
# history.append(c)
|
96 |
|
97 |
+
# env = Environment(test, history=history, state_size=state_size)
|
98 |
+
# observation = env.reset()
|
99 |
|
100 |
|
101 |
+
# model_gradients_history = dict()
|
102 |
+
# checkpoint = OrderedDict()
|
103 |
|
104 |
+
# for name, param in agent.named_parameters():
|
105 |
+
# model_gradients_history.update({name: torch.zeros_like(param)})
|
106 |
|
107 |
+
# for _ in tqdm(range(state_size, len(test))):
|
108 |
+
# observation = torch.as_tensor(observation).float()
|
109 |
+
# action = agent(observation)
|
110 |
+
# observation, reward, _ = env.step(action.data.numpy())
|
111 |
|
112 |
|
113 |
|
114 |
|
115 |
+
# action.backward()
|
116 |
|
117 |
+
# for name, param in agent.named_parameters():
|
118 |
|
119 |
+
# grad_n = param.grad
|
120 |
+
# param = param + optimizer.step(grad_n, reward, observation[-1], model_gradients_history[name])
|
121 |
+
# checkpoint[name] = param
|
122 |
+
# model_gradients_history.update({name: grad_n})
|
123 |
|
124 |
+
# optimizer.after_step(reward)
|
125 |
+
# agent.load_state_dict(checkpoint)
|
126 |
|
127 |
print(env.profits)
|