BreakLee's picture
Upload 14 files
8fd167a verified
__all__ = ['block', 'make_clickable_model', 'make_clickable_user', 'get_submissions']
import gradio as gr
import pandas as pd
import json
import pdb
import tempfile
import re
from constants import *
from src.auto_leaderboard.model_metadata_type import ModelType
import dask.dataframe as dd
global data_component, filter_component
def validate_model_size(s):
pattern = r'^\d+B$|^-$'
if re.match(pattern, s):
return s
else:
return '-'
def upload_file(files):
file_paths = [file.name for file in files]
return file_paths
def prediction_analyse(prediction_content):
# pdb.set_trace()
predictions = prediction_content.split("\n")
# 读取 ground_truth 文件
df = dd.read_parquet("./file/av_odyssey.parquet")
ground_truth = {row[0]: row[6] for row in df.itertuples(index=False, name=None)}
# 初始化结果统计字典
results = {i: {"correct": 0, "total": 0} for i in range(1, 27)}
# 遍历 predictions,计算每个 question_type_id 的正确预测数和总预测数
for prediction in predictions:
# pdb.set_trace()
prediction = prediction.strip()
if not prediction:
continue
try:
prediction = json.loads(prediction)
except json.JSONDecodeError:
print(f"Warning: Skipping invalid JSON data in line: {prediction}")
continue
question_id = prediction["question_id"]
if question_id not in ground_truth.keys():
continue
gt_item = ground_truth[question_id]
question_type_id = question_id.split("_")[0]
if prediction["prediction"] == gt_item:
results[int(question_type_id)]["correct"] += 1
results[int(question_type_id)]["total"] += 1
return results
def add_new_eval(
input_file,
model_name_textbox: str,
revision_name_textbox: str,
model_link: str,
):
if input_file is None:
return "Error! Empty file!"
else:
# v1 evaluation
content = input_file.decode("utf-8")
prediction = prediction_analyse(content)
csv_data = pd.read_csv(CSV_DIR)
# pdb.set_trace()
each_task_accuracy = {i: round(prediction[i]["correct"] / prediction[i]["total"] * 100, 1) for i in range(1, 27)}
# count for average image\video\all
total_correct_timbre = round(sum(prediction[i]["correct"] for i in range(timbre_task[0], timbre_task[1] + 1)) / sum(prediction[i]["total"] for i in range(timbre_task[0], timbre_task[1] + 1)) * 100, 1)
total_correct_tone = round(sum(prediction[i]["correct"] for i in range(tone_task[0], tone_task[1] + 1)) / sum(prediction[i]["total"] for i in range(tone_task[0], tone_task[1] + 1)) * 100, 1)
total_correct_melody = round(sum(prediction[i]["correct"] for i in range(melody_task[0], melody_task[1] + 1)) / sum(prediction[i]["total"] for i in range(melody_task[0], melody_task[1] + 1)) * 100, 1)
total_correct_space = round(sum(prediction[i]["correct"] for i in range(space_task[0], space_task[1] + 1)) / sum(prediction[i]["total"] for i in range(space_task[0], space_task[1] + 1)) * 100, 1)
total_correct_time = round(sum(prediction[i]["correct"] for i in range(time_task[0], time_task[1] + 1)) / sum(prediction[i]["total"] for i in range(time_task[0], time_task[1] + 1)) * 100, 1)
total_correct_hallucination = round(sum(prediction[i]["correct"] for i in range(hallucination_task[0], hallucination_task[1] + 1)) / sum(prediction[i]["total"] for i in range(hallucination_task[0], hallucination_task[1] + 1)) * 100, 1)
total_correct_intricay = round(sum(prediction[i]["correct"] for i in range(intricay_task[0], intricay_task[1] + 1)) / sum(prediction[i]["total"] for i in range(intricay_task[0], intricay_task[1] + 1)) * 100, 1)
all_average = round(sum(prediction[i]["correct"] for i in range(1, 27)) / sum(prediction[i]["total"] for i in range(1, 27)) * 100, 1)
if revision_name_textbox == '':
col = csv_data.shape[0]
model_name = model_name_textbox
else:
model_name = revision_name_textbox
model_name_list = csv_data['Model']
name_list = [name.split(']')[0][1:] for name in model_name_list]
if revision_name_textbox not in name_list:
col = csv_data.shape[0]
else:
col = name_list.index(revision_name_textbox)
if model_link == '':
model_name = model_name # no url
else:
model_name = '[' + model_name + '](' + model_link + ')'
# add new data
new_data = [
model_name,
all_average,
total_correct_timbre,
total_correct_tone,
total_correct_melody,
total_correct_space,
total_correct_time,
total_correct_hallucination,
total_correct_intricay,
each_task_accuracy[1],
each_task_accuracy[2],
each_task_accuracy[3],
each_task_accuracy[4],
each_task_accuracy[5],
each_task_accuracy[6],
each_task_accuracy[7],
each_task_accuracy[8],
each_task_accuracy[9],
each_task_accuracy[10],
each_task_accuracy[11],
each_task_accuracy[12],
each_task_accuracy[13],
each_task_accuracy[14],
each_task_accuracy[15],
each_task_accuracy[16],
each_task_accuracy[17],
each_task_accuracy[18],
each_task_accuracy[19],
each_task_accuracy[20],
each_task_accuracy[21],
each_task_accuracy[22],
each_task_accuracy[23],
each_task_accuracy[24],
each_task_accuracy[25],
each_task_accuracy[26],
]
csv_data.loc[col] = new_data
csv_data = csv_data.to_csv(CSV_DIR, index=False)
return 0
def get_baseline_df():
df = pd.read_csv(CSV_DIR)
df = df.sort_values(by="Avg. All", ascending=False)
present_columns = MODEL_INFO + checkbox_group.value
df = df[present_columns]
return df
def get_all_df():
df = pd.read_csv(CSV_DIR)
df = df.sort_values(by="Avg. All", ascending=False)
return df
def switch_version(version):
return f"当前版本: {version}"
block = gr.Blocks()
with block:
gr.Markdown(
LEADERBORAD_INTRODUCTION
)
with gr.Tabs(elem_classes="tab-buttons") as tabs:
# table seed-bench-v1
with gr.TabItem("🏅 AV-Odyssey Benchmark", elem_id="av-odyssey-tab-table", id=1):
with gr.Row():
with gr.Accordion("Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
elem_id="citation-button",
).style(show_copy_button=True)
gr.Markdown(
TABLE_INTRODUCTION
)
# selection for column part:
checkbox_group = gr.CheckboxGroup(
choices=TASK_INFO,
value=AVG_INFO,
label="Evaluation Dimension",
interactive=True,
)
baseline_value = get_baseline_df()
baseline_header = MODEL_INFO + checkbox_group.value
baseline_datatype = ['markdown'] * len(MODEL_INFO) + ['number'] * len(checkbox_group.value)
# 创建数据帧组件
data_component = gr.components.Dataframe(
value=baseline_value,
headers=baseline_header,
type="pandas",
datatype=baseline_datatype,
interactive=False,
visible=True,
)
def on_filter_model_size_method_change(selected_columns):
updated_data = get_all_df()
# columns:
selected_columns = [item for item in TASK_INFO if item in selected_columns]
present_columns = MODEL_INFO + selected_columns
updated_data = updated_data[present_columns]
updated_data = updated_data.sort_values(by=selected_columns[0], ascending=False)
updated_headers = present_columns
update_datatype = [DATA_TITILE_TYPE[COLUMN_NAMES.index(x)] for x in updated_headers]
filter_component = gr.components.Dataframe(
value=updated_data,
headers=updated_headers,
type="pandas",
datatype=update_datatype,
interactive=False,
visible=True,
)
# pdb.set_trace()
return filter_component.value
def on_average_type_change(average_type):
return get_baseline_df()
checkbox_group.change(fn=on_filter_model_size_method_change, inputs=[checkbox_group], outputs=data_component)
# table 2
with gr.TabItem("📝 About", elem_id="av-odyssey-tab-table", id=2):
gr.Markdown(LEADERBORAD_INFO, elem_classes="markdown-text")
# table 3
with gr.TabItem("🚀 Submit here! ", elem_id="av-odyssey-tab-table", id=3):
gr.Markdown(LEADERBORAD_INTRODUCTION, elem_classes="markdown-text")
with gr.Row():
gr.Markdown(SUBMIT_INTRODUCTION, elem_classes="markdown-text")
with gr.Row():
gr.Markdown("# ✉️✨ Submit your model evaluation json file here!", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(
label="Model name", placeholder="VideoLLaMA2"
)
revision_name_textbox = gr.Textbox(
label="Revision Model Name", placeholder="VideoLLaMA2"
)
model_link = gr.Textbox(
label="Model Link", placeholder="https://huggingface.co/DAMO-NLP-SG/VideoLLaMA2.1-7B-16F"
)
with gr.Column():
input_file = gr.inputs.File(label = "Click to Upload a json File", file_count="single", type='binary')
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
submit_button.click(
add_new_eval,
inputs = [
input_file,
model_name_textbox,
revision_name_textbox,
model_link
],
)
def refresh_data():
value1 = get_baseline_df()
return value1
with gr.Row():
data_run = gr.Button("Refresh")
data_run.click(
refresh_data, outputs=data_component
)
block.launch()