Spaces:
Runtime error
Runtime error
File size: 2,600 Bytes
7eaa9e0 2092f50 7eaa9e0 b74f07b 7eaa9e0 b74f07b 7eaa9e0 ff6fd42 7eaa9e0 2092f50 b74f07b 7eaa9e0 cc58b68 7eaa9e0 1c287e5 7eaa9e0 1c287e5 186d68d 7eaa9e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
import streamlit as st
import os
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain.chains.question_answering import load_qa_chain
from langchain.callbacks import get_openai_callback
from langchain import HuggingFaceHub, LLMChain
from langchain.embeddings import HuggingFaceHubEmbeddings,HuggingFaceInferenceAPIEmbeddings
token = os.environ['HF_TOKEN']
repo_id = "sentence-transformers/all-mpnet-base-v2"
hf = HuggingFaceHubEmbeddings(
repo_id=repo_id,
task="feature-extraction",
huggingfacehub_api_token= token,
)
# from langchain.embeddings import HuggingFaceInferenceAPIEmbeddings
# embeddings = HuggingFaceInferenceAPIEmbeddings(
# api_key=token, model_name="sentence-transformers/all-MiniLM-l6-v2"
# )
# hf = HuggingFaceHubEmbeddings(
# repo_id=repo_id,
# task="feature-extraction",
# huggingfacehub_api_token= HUGGINGFACEHUB_API_TOKEN,
# )
def main():
st.set_page_config(page_title="Ask your PDF")
st.header("Ask your PDF 💬")
# upload file
pdf = st.file_uploader("Upload your PDF", type="pdf")
# extract the text
if pdf is not None:
pdf_reader = PdfReader(pdf)
text = ""
for page in pdf_reader.pages:
text += page.extract_text()
# split into chunks
text_splitter = CharacterTextSplitter(
separator="\n",
chunk_size=1000,
chunk_overlap=200,
length_function=len
)
chunks = text_splitter.split_text(text)
# create embeddings
# embeddings = OpenAIEmbeddings()
# embeddings = query(chunks)
# embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
knowledge_base = FAISS.from_texts(chunks, hf)
# show user input
user_question = st.text_input("Ask a question about your PDF:")
if user_question:
docs = knowledge_base.similarity_search(user_question)
# llm = OpenAI()
hub_llm = HuggingFaceHub(
repo_id='mistralai/Mistral-7B-Instruct-v0.3',
model_kwargs={'temperature':0.01,"max_length": 2048,},
huggingfacehub_api_token=token)
llm = hub_llm
chain = load_qa_chain(llm, chain_type="map_reduce")
with get_openai_callback() as cb:
response = chain.run(input_documents=docs, question=[user_question])
# print(cb)
st.write(response)
if __name__ == '__main__':
main()
|