Update app.py
Browse files
app.py
CHANGED
@@ -1,100 +1,96 @@
|
|
1 |
-
import
|
2 |
import numpy as np
|
3 |
import pandas as pd
|
4 |
-
import
|
5 |
-
import matplotlib.pyplot as plt
|
6 |
from sklearn.preprocessing import MinMaxScaler
|
7 |
-
|
8 |
-
|
9 |
|
10 |
-
# Define
|
11 |
tickers = ['AAPL', 'MSFT', 'GOOGL', 'TSLA', 'AMZN', 'FB', 'NFLX', 'NVDA', 'INTC', 'IBM']
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
|
18 |
-
#
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
22 |
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
-
|
26 |
-
X_train = train_data.reshape((train_data.shape[0], train_data.shape[1], 1))
|
27 |
|
|
|
|
|
|
|
28 |
# Define LSTM model
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
# Compile model
|
36 |
-
model.compile(optimizer='adam', loss='mean_squared_error')
|
37 |
-
model.fit(X_train, np.array(data['Close'][60:]), batch_size=1, epochs=1)
|
38 |
-
|
39 |
-
return model, scaler
|
40 |
-
|
41 |
-
def stock_prediction_app(ticker, start_date, end_date):
|
42 |
-
# Fetch stock data
|
43 |
-
data = yf.download(ticker, start=start_date, end=end_date)
|
44 |
-
if data.empty:
|
45 |
-
return "No data found for the selected dates.", None
|
46 |
|
47 |
-
#
|
48 |
-
|
49 |
-
|
50 |
-
# Predict future prices
|
51 |
-
last_60_days = data['Close'][-60:].values.reshape(-1, 1)
|
52 |
-
last_60_days_scaled = scaler.transform(last_60_days)
|
53 |
-
X_test = []
|
54 |
-
X_test.append(last_60_days_scaled)
|
55 |
-
X_test = np.array(X_test).reshape((1, X_test.shape[1], 1))
|
56 |
|
57 |
-
#
|
58 |
-
|
59 |
-
predicted_price = scaler.inverse_transform(predicted_price)
|
60 |
|
61 |
-
#
|
62 |
-
|
63 |
-
|
64 |
-
lowest_price = data['Close'].min()
|
65 |
-
percentage_change = ((predicted_price[0][0] - current_price) / current_price) * 100
|
66 |
|
67 |
-
#
|
68 |
plt.figure(figsize=(10, 5))
|
69 |
-
plt.plot(
|
70 |
-
plt.
|
71 |
plt.title(f'{ticker} Stock Price Prediction')
|
72 |
-
plt.xlabel('
|
73 |
-
plt.ylabel('Price')
|
74 |
plt.legend()
|
75 |
-
plt.grid()
|
76 |
|
77 |
-
# Save the plot
|
78 |
-
plt.savefig(
|
79 |
-
plt.close()
|
80 |
|
81 |
-
|
|
|
82 |
|
83 |
-
# Gradio UI
|
84 |
app = gr.Blocks()
|
85 |
|
86 |
with app:
|
87 |
gr.Markdown("# Stock Buy/Sell Prediction App")
|
88 |
|
|
|
89 |
ticker = gr.Dropdown(tickers, label="Select Stock Ticker")
|
|
|
|
|
90 |
start_date = gr.Textbox(label="Start Date (YYYY-MM-DD)")
|
91 |
end_date = gr.Textbox(label="End Date (YYYY-MM-DD)")
|
92 |
|
|
|
93 |
predict_button = gr.Button("Predict")
|
94 |
|
95 |
-
|
|
|
96 |
output_image = gr.Image(label="Stock Price Graph")
|
97 |
|
|
|
98 |
predict_button.click(fn=stock_prediction_app, inputs=[ticker, start_date, end_date], outputs=[output_text, output_image])
|
99 |
|
|
|
100 |
app.launch()
|
|
|
1 |
+
import yfinance as yf
|
2 |
import numpy as np
|
3 |
import pandas as pd
|
4 |
+
import tensorflow as tf
|
|
|
5 |
from sklearn.preprocessing import MinMaxScaler
|
6 |
+
import gradio as gr
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
|
9 |
+
# Define stock tickers for the dropdown
|
10 |
tickers = ['AAPL', 'MSFT', 'GOOGL', 'TSLA', 'AMZN', 'FB', 'NFLX', 'NVDA', 'INTC', 'IBM']
|
11 |
|
12 |
+
# Function to fetch stock data and make predictions
|
13 |
+
def stock_prediction_app(ticker, start_date, end_date):
|
14 |
+
# Fetch historical stock data from Yahoo Finance
|
15 |
+
stock_data = yf.download(ticker, start=start_date, end=end_date)
|
16 |
|
17 |
+
# Check if data is fetched correctly
|
18 |
+
if stock_data.empty:
|
19 |
+
return "No data available for the selected date range.", None
|
20 |
+
|
21 |
+
# Prepare the data for LSTM model
|
22 |
+
df_close = stock_data[['Close']] # Use only the 'Close' column for prediction
|
23 |
+
scaler = MinMaxScaler(feature_range=(0, 1))
|
24 |
+
scaled_data = scaler.fit_transform(df_close)
|
25 |
|
26 |
+
# Create datasets for training the LSTM model
|
27 |
+
def create_dataset(data, time_step=60):
|
28 |
+
X_train, y_train = [], []
|
29 |
+
for i in range(len(data)-time_step-1):
|
30 |
+
X_train.append(data[i:(i+time_step), 0])
|
31 |
+
y_train.append(data[i + time_step, 0])
|
32 |
+
return np.array(X_train), np.array(y_train)
|
33 |
|
34 |
+
X_train, y_train = create_dataset(scaled_data)
|
|
|
35 |
|
36 |
+
# Reshape the data for LSTM [samples, time steps, features]
|
37 |
+
X_train = X_train.reshape(X_train.shape[0], X_train.shape[1], 1)
|
38 |
+
|
39 |
# Define LSTM model
|
40 |
+
lstm_model = tf.keras.Sequential([
|
41 |
+
tf.keras.layers.LSTM(50, return_sequences=True, input_shape=(60, 1)),
|
42 |
+
tf.keras.layers.LSTM(50, return_sequences=False),
|
43 |
+
tf.keras.layers.Dense(25),
|
44 |
+
tf.keras.layers.Dense(1)
|
45 |
+
])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
+
# Compile the model
|
48 |
+
lstm_model.compile(optimizer='adam', loss='mean_squared_error')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
+
# Train the model
|
51 |
+
lstm_model.fit(X_train, y_train, batch_size=1, epochs=1)
|
|
|
52 |
|
53 |
+
# Predict on the same data (just for demonstration)
|
54 |
+
predictions = lstm_model.predict(X_train)
|
55 |
+
predictions = scaler.inverse_transform(predictions) # Convert back to original scale
|
|
|
|
|
56 |
|
57 |
+
# Create a plot to show predictions
|
58 |
plt.figure(figsize=(10, 5))
|
59 |
+
plt.plot(df_close.values, label='Actual Stock Price')
|
60 |
+
plt.plot(predictions, label='Predicted Stock Price')
|
61 |
plt.title(f'{ticker} Stock Price Prediction')
|
62 |
+
plt.xlabel('Days')
|
63 |
+
plt.ylabel('Stock Price')
|
64 |
plt.legend()
|
|
|
65 |
|
66 |
+
# Save the plot to display in Gradio app
|
67 |
+
plt.savefig('stock_prediction_plot.png')
|
|
|
68 |
|
69 |
+
# Return a message and the path to the saved plot
|
70 |
+
return f"Prediction complete for {ticker} from {start_date} to {end_date}", 'stock_prediction_plot.png'
|
71 |
|
72 |
+
# Create the Gradio UI for the app
|
73 |
app = gr.Blocks()
|
74 |
|
75 |
with app:
|
76 |
gr.Markdown("# Stock Buy/Sell Prediction App")
|
77 |
|
78 |
+
# Dropdown for stock tickers
|
79 |
ticker = gr.Dropdown(tickers, label="Select Stock Ticker")
|
80 |
+
|
81 |
+
# Textboxes for manual date input
|
82 |
start_date = gr.Textbox(label="Start Date (YYYY-MM-DD)")
|
83 |
end_date = gr.Textbox(label="End Date (YYYY-MM-DD)")
|
84 |
|
85 |
+
# Button to trigger the prediction
|
86 |
predict_button = gr.Button("Predict")
|
87 |
|
88 |
+
# Output fields for text and image
|
89 |
+
output_text = gr.Textbox(label="Prediction Result")
|
90 |
output_image = gr.Image(label="Stock Price Graph")
|
91 |
|
92 |
+
# Set up button click event to run the prediction function
|
93 |
predict_button.click(fn=stock_prediction_app, inputs=[ticker, start_date, end_date], outputs=[output_text, output_image])
|
94 |
|
95 |
+
# Launch the Gradio app
|
96 |
app.launch()
|