File size: 6,585 Bytes
1ff5897 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
from shiny import App, ui, render
import requests
from bs4 import BeautifulSoup
import pandas as pd
import torch
from transformers import BertTokenizer, BertModel
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
# Step 1: Scrape the free courses from Analytics Vidhya
url = "https://courses.analyticsvidhya.com/pages/all-free-courses"
response = requests.get(url)
soup = BeautifulSoup(response.content, 'html.parser')
courses = []
# Extracting course title, image, and course link
for course_card in soup.find_all('header', class_='course-card__img-container'):
img_tag = course_card.find('img', class_='course-card__img')
if img_tag:
title = img_tag.get('alt')
image_url = img_tag.get('src')
link_tag = course_card.find_previous('a')
if link_tag:
course_link = link_tag.get('href')
if not course_link.startswith('http'):
course_link = 'https://courses.analyticsvidhya.com' + course_link
courses.append({
'title': title,
'image_url': image_url,
'course_link': course_link
})
# Step 2: Create DataFrame
df = pd.DataFrame(courses)
# Load pre-trained BERT model and tokenizer
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertModel.from_pretrained('bert-base-uncased')
# Function to generate embeddings using BERT
def get_bert_embedding(text):
inputs = tokenizer(text, return_tensors='pt', truncation=True, padding=True)
with torch.no_grad():
outputs = model(**inputs)
return outputs.last_hidden_state.mean(dim=1).numpy()
# Create embeddings for course titles
df['embedding'] = df['title'].apply(lambda x: get_bert_embedding(x))
# Function to perform search using BERT-based similarity
def search_courses(query):
query_embedding = get_bert_embedding(query)
course_embeddings = np.vstack(df['embedding'].values)
# Compute cosine similarity between query embedding and course embeddings
similarities = cosine_similarity(query_embedding, course_embeddings).flatten()
# Add the similarity scores to the DataFrame
df['score'] = similarities
# Sort by similarity score in descending order and return top results
top_results = df.sort_values(by='score', ascending=False).head(10)
return top_results[['title', 'image_url', 'course_link', 'score']].to_dict(orient='records')
# Shiny UI and Server
app_ui = ui.page_fluid(
ui.tags.style(
"""
@import url('https://fonts.googleapis.com/css2?family=Poppins:wght@300;500;700&display=swap');
body {
font-family: 'Poppins', sans-serif;
background-color: #f4f6f9;
}
.container {
padding: 20px;
}
h2 {
color: #ff6f61;
font-weight: 700;
text-align: center;
}
.result-container {
display: flex;
flex-wrap: wrap;
gap: 20px;
justify-content: center;
}
.course-card {
background-color: #ffffff;
border-radius: 12px;
box-shadow: 0 4px 10px rgba(0, 0, 0, 0.15);
overflow: hidden;
width: calc(50% - 10px);
transition: transform 0.3s, box-shadow 0.3s;
}
.course-card:hover {
transform: scale(1.05);
box-shadow: 0 6px 20px rgba(0, 0, 0, 0.2);
}
.course-image {
width: 100%;
height: 180px;
object-fit: cover;
border-top-left-radius: 12px;
border-top-right-radius: 12px;
}
.course-info {
padding: 15px;
}
.course-info h3 {
font-size: 20px;
color: #333;
margin-top: 0;
}
.course-info p {
color: #666;
font-size: 16px;
margin-bottom: 10px;
}
.course-link {
background-color: #ff6f61;
color: white;
padding: 8px 12px;
text-decoration: none;
border-radius: 6px;
font-size: 15px;
display: inline-block;
margin-top: 10px;
transition: background-color 0.2s;
}
.course-link:hover {
background-color: #e85a50;
}
.no-results {
text-align: center;
color: #888;
font-style: italic;
}
"""
),
ui.h2("Analytics Vidhya Smart Course Search"),
ui.input_text("query", "Enter your search query", placeholder="e.g., machine learning, data science, python"),
ui.output_text("search_info"),
ui.output_ui("results")
)
def server(input, output, session):
@output
@render.ui
def results():
if not input.query():
return ui.p("Enter a search query to get started!", class_="no-results")
# Perform the search
query = input.query()
results = search_courses(query)
if results:
result_ui = []
for item in results:
course_title = item['title']
course_image = item['image_url']
course_link = item['course_link']
relevance_score = round(item['score'] * 100, 2)
# Create course card UI
result_ui.append(
ui.div(
ui.img(src=course_image, class_="course-image"),
ui.div(
ui.h3(course_title),
ui.p(f"Relevance: {relevance_score}%"),
ui.a("View Course", href=course_link, target="_blank", class_="course-link"),
class_="course-info"
),
class_="course-card"
)
)
return ui.div(*result_ui, class_="result-container")
else:
return ui.p("No results found.", class_="no-results")
@output
@render.text
def search_info():
return f"Results for '{input.query()}'" if input.query() else "Search for courses by typing a query above."
app = App(app_ui, server)
|