File size: 6,585 Bytes
1ff5897
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
from shiny import App, ui, render
import requests
from bs4 import BeautifulSoup
import pandas as pd
import torch
from transformers import BertTokenizer, BertModel
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity

# Step 1: Scrape the free courses from Analytics Vidhya
url = "https://courses.analyticsvidhya.com/pages/all-free-courses"
response = requests.get(url)
soup = BeautifulSoup(response.content, 'html.parser')

courses = []

# Extracting course title, image, and course link
for course_card in soup.find_all('header', class_='course-card__img-container'):
    img_tag = course_card.find('img', class_='course-card__img')
    
    if img_tag:
        title = img_tag.get('alt')
        image_url = img_tag.get('src')
        
        link_tag = course_card.find_previous('a')
        if link_tag:
            course_link = link_tag.get('href')
            if not course_link.startswith('http'):
                course_link = 'https://courses.analyticsvidhya.com' + course_link

            courses.append({
                'title': title,
                'image_url': image_url,
                'course_link': course_link
            })

# Step 2: Create DataFrame
df = pd.DataFrame(courses)

# Load pre-trained BERT model and tokenizer
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertModel.from_pretrained('bert-base-uncased')

# Function to generate embeddings using BERT
def get_bert_embedding(text):
    inputs = tokenizer(text, return_tensors='pt', truncation=True, padding=True)
    with torch.no_grad():
        outputs = model(**inputs)
    return outputs.last_hidden_state.mean(dim=1).numpy()

# Create embeddings for course titles
df['embedding'] = df['title'].apply(lambda x: get_bert_embedding(x))

# Function to perform search using BERT-based similarity
def search_courses(query):
    query_embedding = get_bert_embedding(query)
    course_embeddings = np.vstack(df['embedding'].values)
    
    # Compute cosine similarity between query embedding and course embeddings
    similarities = cosine_similarity(query_embedding, course_embeddings).flatten()
    
    # Add the similarity scores to the DataFrame
    df['score'] = similarities
    
    # Sort by similarity score in descending order and return top results
    top_results = df.sort_values(by='score', ascending=False).head(10)
    return top_results[['title', 'image_url', 'course_link', 'score']].to_dict(orient='records')

# Shiny UI and Server
app_ui = ui.page_fluid(
    ui.tags.style(
        """

        @import url('https://fonts.googleapis.com/css2?family=Poppins:wght@300;500;700&display=swap');



        body {

            font-family: 'Poppins', sans-serif;

            background-color: #f4f6f9;

        }



        .container {

            padding: 20px;

        }

        

        h2 {

            color: #ff6f61;

            font-weight: 700;

            text-align: center;

        }



        .result-container {

            display: flex;

            flex-wrap: wrap;

            gap: 20px;

            justify-content: center;

        }

        

        .course-card {

            background-color: #ffffff;

            border-radius: 12px;

            box-shadow: 0 4px 10px rgba(0, 0, 0, 0.15);

            overflow: hidden;

            width: calc(50% - 10px);

            transition: transform 0.3s, box-shadow 0.3s;

        }

        

        .course-card:hover {

            transform: scale(1.05);

            box-shadow: 0 6px 20px rgba(0, 0, 0, 0.2);

        }



        .course-image {

            width: 100%;

            height: 180px;

            object-fit: cover;

            border-top-left-radius: 12px;

            border-top-right-radius: 12px;

        }



        .course-info {

            padding: 15px;

        }

        

        .course-info h3 {

            font-size: 20px;

            color: #333;

            margin-top: 0;

        }



        .course-info p {

            color: #666;

            font-size: 16px;

            margin-bottom: 10px;

        }



        .course-link {

            background-color: #ff6f61;

            color: white;

            padding: 8px 12px;

            text-decoration: none;

            border-radius: 6px;

            font-size: 15px;

            display: inline-block;

            margin-top: 10px;

            transition: background-color 0.2s;

        }



        .course-link:hover {

            background-color: #e85a50;

        }



        .no-results {

            text-align: center;

            color: #888;

            font-style: italic;

        }

        """
    ),
    ui.h2("Analytics Vidhya Smart Course Search"),
    ui.input_text("query", "Enter your search query", placeholder="e.g., machine learning, data science, python"),
    ui.output_text("search_info"),
    ui.output_ui("results")
)

def server(input, output, session):
    @output
    @render.ui
    def results():
        if not input.query():
            return ui.p("Enter a search query to get started!", class_="no-results")
        
        # Perform the search
        query = input.query()
        results = search_courses(query)
        
        if results:
            result_ui = []
            for item in results:
                course_title = item['title']
                course_image = item['image_url']
                course_link = item['course_link']
                relevance_score = round(item['score'] * 100, 2)
                
                # Create course card UI
                result_ui.append(
                    ui.div(
                        ui.img(src=course_image, class_="course-image"),
                        ui.div(
                            ui.h3(course_title),
                            ui.p(f"Relevance: {relevance_score}%"),
                            ui.a("View Course", href=course_link, target="_blank", class_="course-link"),
                            class_="course-info"
                        ),
                        class_="course-card"
                    )
                )
            return ui.div(*result_ui, class_="result-container")
        else:
            return ui.p("No results found.", class_="no-results")
    
    @output
    @render.text
    def search_info():
        return f"Results for '{input.query()}'" if input.query() else "Search for courses by typing a query above."

app = App(app_ui, server)