File size: 6,629 Bytes
fe18b00
 
 
 
 
c59f874
fe18b00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b309ee6
fe18b00
 
 
 
 
 
b5afe2a
b309ee6
 
fe18b00
 
 
 
 
 
b309ee6
fe18b00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8e4b29
 
fe18b00
b8e4b29
fe18b00
02b4f6b
fe18b00
 
6bf7053
 
da52eb6
fe18b00
bb1c34e
 
 
 
 
 
6bf7053
fe18b00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6bf7053
 
b5afe2a
 
fe18b00
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import streamlit as st
import pandas as pd
import joblib
import matplotlib.pyplot as plt
import time
import base64 

# Load the pre-trained numerical imputer, scaler, and model using joblib
num_imputer = joblib.load('numerical_imputer.joblib')
scaler = joblib.load('scaler.joblib')
model = joblib.load('Final_model.joblib')

# Define a function to preprocess the input data
def preprocess_input_data(input_data):
    input_data_df = pd.DataFrame(input_data, columns=['PRG', 'PL', 'PR', 'SK', 'TS', 'M11', 'BD2', 'Age', 'Insurance'])
    num_columns = input_data_df.select_dtypes(include='number').columns

    input_data_imputed_num = num_imputer.transform(input_data_df[num_columns])
    input_scaled_df = pd.DataFrame(scaler.transform(input_data_imputed_num), columns=num_columns)

    return input_scaled_df


# Define a function to make the sepsis prediction
def predict_sepsis(input_data):
    input_scaled_df = preprocess_input_data(input_data)
    prediction = model.predict(input_scaled_df)[0]
    probabilities = model.predict_proba(input_scaled_df)[0]
    sepsis_status = "Positive" if prediction == 1 else "Negative"
    
    status_icon = "✔" if prediction == 1 else "✘"  # Red 'X' icon for positive sepsis prediction, green checkmark icon for negative sepsis prediction
    sepsis_explanation = "Sepsis is a life-threatening condition caused by an infection. A positive prediction suggests that the patient might be exhibiting sepsis symptoms and requires immediate medical attention." if prediction == 1 else "Sepsis is a life-threatening condition caused by an infection. A negative prediction suggests that the patient is not currently exhibiting sepsis symptoms."

    output_df = pd.DataFrame(input_data, columns=['PRG', 'PL', 'PR', 'SK', 'TS', 'M11', 'BD2', 'Age', 'Insurance'])
    output_df['Prediction'] = sepsis_status
    output_df['Negative Probability'] = probabilities[0]
    output_df['Positive Probability'] = probabilities[1]

    return output_df, probabilities, status_icon, sepsis_explanation

# Create a Streamlit app
def main():
    st.title('Sepsis Prediction App')

    st.image("Strealit_.jpg")

    # How to use
    st.sidebar.title('How to Use')
    st.sidebar.markdown('1. Adjust the input parameters on the left sidebar.')
    st.sidebar.markdown('2. Click the "Predict" button to initiate the prediction.')
    st.sidebar.markdown('3. The app will simulate a prediction process with a progress bar.')
    st.sidebar.markdown('4. Once the prediction is complete, the results will be displayed below.')


    st.sidebar.title('Input Parameters')

    # Input parameter explanations
    st.sidebar.markdown('**PRG:** Plasma Glucose')
    PRG = st.sidebar.number_input('PRG', value=0.0)

    st.sidebar.markdown('**PL:** Blood Work Result 1')
    PL = st.sidebar.number_input('PL', value=0.0)

    st.sidebar.markdown('**PR:** Blood Pressure Measured')
    PR = st.sidebar.number_input('PR', value=0.0)

    st.sidebar.markdown('**SK:** Blood Work Result 2')
    SK = st.sidebar.number_input('SK', value=0.0)

    st.sidebar.markdown('**TS:** Blood Work Result 3')
    TS = st.sidebar.number_input('TS', value=0.0)

    st.sidebar.markdown('**M11:** BMI')
    M11 = st.sidebar.number_input('M11', value=0.0)

    st.sidebar.markdown('**BD2:** Blood Work Result 4')
    BD2 = st.sidebar.number_input('BD2', value=0.0)

    st.sidebar.markdown('**Age:** What is the Age of the Patient: ')
    Age = st.sidebar.number_input('Age', value=0.0)

    st.sidebar.markdown('**Insurance:** Does the patient have Insurance?')
    insurance_options = {0: 'NO', 1: 'YES'}
    Insurance = st.sidebar.radio('Insurance', list(insurance_options.keys()), format_func=lambda x: insurance_options[x])


    input_data = [[PRG, PL, PR, SK, TS, M11, BD2, Age, Insurance]]

    if st.sidebar.button('Predict'):
        with st.spinner("Predicting..."):
            # Simulate a long-running process
            progress_bar = st.progress(0)
            step = 20 # A big step will reduce the execution time
            for i in range(0, 100, step):
                time.sleep(0.1)
                progress_bar.progress(i + step)

            output_df, probabilities, status_icon, sepsis_explanation = predict_sepsis(input_data)

            st.subheader('Prediction Result')
            prediction_text = "Positive" if status_icon == "✔" else "Negative"
            st.markdown(f"Prediction: **{prediction_text}**")
            st.markdown(f"{status_icon} {sepsis_explanation}")
            st.write(output_df)

            # Add a download button for output_df
            csv = output_df.to_csv(index=False)
            b64 = base64.b64encode(csv.encode()).decode()
            href = f'<a href="data:file/csv;base64,{b64}" download="output.csv">Download Output CSV</a>'
            st.markdown(href, unsafe_allow_html=True)
            

            # Plot the probabilities
            fig, ax = plt.subplots()
            ax.bar(['Negative', 'Positive'], probabilities)
            ax.set_xlabel('Sepsis Status')
            ax.set_ylabel('Probability')
            ax.set_title('Sepsis Prediction Probabilities')
            st.pyplot(fig)

            # Print feature importance
            if hasattr(model, 'coef_'):
                feature_importances = model.coef_[0]
                feature_names = ['PRG', 'PL', 'PR', 'SK', 'TS', 'M11', 'BD2', 'Age', 'Insurance']

                importance_df = pd.DataFrame({'Feature': feature_names, 'Importance': feature_importances})
                importance_df = importance_df.sort_values('Importance', ascending=False)

                st.subheader('Feature Importance')
                fig, ax = plt.subplots()
                bars = ax.bar(importance_df['Feature'], importance_df['Importance'])
                ax.set_xlabel('Feature')
                ax.set_ylabel('Importance')
                ax.set_title('Feature Importance')
                ax.tick_params(axis='x', rotation=45)

                # Add data labels to the bars
                for bar in bars:
                    height = bar.get_height()
                    ax.annotate(f'{height:.2f}', xy=(bar.get_x() + bar.get_width() / 2, height),
                    xytext=(0, 3),  # 3 points vertical offset
                    textcoords="offset points",
                    ha='center', va='bottom')
                st.pyplot(fig)

            else:
                st.write('Feature importance is not available for this model.')

            #st.subheader('Sepsis Explanation')
            #st.markdown(f"{status_icon} {sepsis_explanation}")


if __name__ == '__main__':
    main()