File size: 1,350 Bytes
fb19eaf
 
 
 
 
 
0670066
fb19eaf
 
0670066
 
9d24fe4
0d004be
0670066
 
a860168
f71e698
0670066
 
 
 
 
 
 
 
 
 
fb19eaf
0670066
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
import gradio as gr
from fastai.vision.all import *
import skimage

learn = load_learner('export.pkl')
labels = learn.dls.vocab

def predict(img):
    img = PILImage.create(img)
    pred, pred_idx, probs = learn.predict(img)
    return {labels[i]: float(probs[i]) for i in range(len(labels))}

title = "Breast cancer detection with Deep Transfer Learning(ResNet18)."
description = "<p style='text-align: center'><b>As a radiologist or oncologist, it is crucial to know what is wrong with a breast x-ray image.</b><br><b>Upload the breast X-ray image to know what is wrong with a patient's breast with or without implant. This product is from the findings of my (Team) published research paper: <a href='https://iopscience.iop.org/article/10.1088/2057-1976/ad3cdf' target='_blank' style='color: blue;'>read paper</a>. Learn more about me: <a href='https://www.linkedin.com/in/fosberg-addai-53a6991a7/' target='_blank' style='color: blue;'>Fosberg Addai</a></b></p>"
article = "<p style='text-align: center'><b>Web app is built and managed by Addai Fosberg</b></p>"
examples = ['img1.jpeg', 'img2.jpeg']

iface = gr.Interface(
    fn=predict,
    inputs=gr.Image(shape=(512, 512)),
    outputs=gr.Label(num_top_classes=3),
    title=title,
    description=description,
    article=article,
    examples=examples,
    enable_queue=True
)

iface.launch()