|
import gradio as gr |
|
from fastai.vision.all import * |
|
import skimage |
|
|
|
learn = load_learner('export.pkl') |
|
|
|
labels = learn.dls.vocab |
|
def predict(img): |
|
img = PILImage.create(img) |
|
pred,pred_idx,probs = learn.predict(img) |
|
return {labels[i]: float(probs[i]) for i in range(len(labels))} |
|
|
|
title = "Breast cancer detection with AI(Deep Transfer Learning)" |
|
description = "<p style='text-align: center'><b>As a radiologist or oncologist, it is crucial to know what is wrong with a breast x-ray image.<b><p>" |
|
article="<p style='text-align: center'> Upload the breast X-ray image to know what is wrong with a patients breast with or without inplant<b></p>" |
|
examples = ['img1.JPEG', 'img2.JPEG'] |
|
|
|
enable_queue=True |
|
|
|
gr.Interface(fn=predict,inputs=gr.inputs.Image(shape=(512, 512)),outputs=gr.outputs.Label(num_top_classes=3),title=title,description=description,article=article,examples=examples,enable_queue=enable_queue).launch() |