Spaces:
Sleeping
Sleeping
# Unsloth Zoo - Utilities for Unsloth | |
# Copyright 2023-present Daniel Han-Chen & the Unsloth team. All rights reserved. | |
# | |
# This program is free software: you can redistribute it and/or modify | |
# it under the terms of the GNU Lesser General Public License as published by | |
# the Free Software Foundation, either version 3 of the License, or | |
# (at your option) any later version. | |
# | |
# This program is distributed in the hope that it will be useful, | |
# but WITHOUT ANY WARRANTY; without even the implied warranty of | |
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
# GNU General Public License for more details. | |
# | |
# You should have received a copy of the GNU Lesser General Public License | |
# along with this program. If not, see <https://www.gnu.org/licenses/>. | |
import torch | |
from unsloth_zoo.loss_utils import fused_linear_cross_entropy | |
scaled_dot_product_attention = torch.nn.functional.scaled_dot_product_attention | |
def disable_compile_scaled_dot_product_attention(*args, **kwargs): | |
return scaled_dot_product_attention(*args, **kwargs) | |
pass | |
torch_compile_options = {'epilogue_fusion': True, 'max_autotune': False, 'shape_padding': True, 'trace.enabled': False, 'triton.cudagraphs': False} | |
from torch import Tensor | |
import torch | |
from torch.nn import functional as F | |
from transformers.models.mllama.modeling_mllama import (F, math, Optional, Tuple, torch, nn, ACT2FN, Cache, ROPE_INIT_FUNCTIONS, MllamaTextConfig, MllamaVisionConfig) | |
def _prepare_cross_attention_mask(cross_attention_mask: torch.Tensor, | |
num_vision_tokens: int, | |
dtype: str,) -> Tuple[torch.Tensor, torch.Tensor]: | |
# reshape so it can be used by attn module | |
batch_size, text_total_length, *_ = cross_attention_mask.shape | |
cross_attention_mask = cross_attention_mask.repeat_interleave(num_vision_tokens, dim=3) | |
cross_attention_mask = cross_attention_mask.view(batch_size, text_total_length, -1) | |
cross_attention_mask = cross_attention_mask.unsqueeze(1) | |
# invert the mask | |
inverted_cross_attn_mask = (1.0 - cross_attention_mask).to(dtype) | |
cross_attention_mask = inverted_cross_attn_mask.masked_fill(inverted_cross_attn_mask.to(torch.bool), torch.finfo(dtype).min) | |
# apply full-row bias, which return 4D tensor of shape [B, H, S1, 1] where value is 0 if the a full row in cross attn mask's | |
# last dimension contains negative infinity values, otherwise it's 1 | |
negative_inf_value = torch.finfo(dtype).min | |
full_text_row_masked_out_mask = ((cross_attention_mask != negative_inf_value).any(dim=-1).type_as(cross_attention_mask)[..., None]) | |
cross_attention_mask *= full_text_row_masked_out_mask | |
return cross_attention_mask!=torch.finfo(cross_attention_mask.dtype).min, full_text_row_masked_out_mask | |
def _prepare_aspect_ratio_attention_mask(aspect_ratio_mask: torch.Tensor, | |
num_patches: int, | |
target_length: int, | |
dtype: torch.dtype,) -> torch.Tensor: | |
# Expand aspect ratio mask to target_length | |
batch_size, max_num_tiles = aspect_ratio_mask.shape | |
attention_mask = aspect_ratio_mask.view(batch_size, max_num_tiles, 1, 1).to(dtype) | |
attention_mask = attention_mask.repeat(1, 1, target_length, 1) | |
# Mask padding patches | |
pad_patches = target_length - num_patches | |
attention_mask[:, :, -pad_patches:] = 0 | |
# Invert the mask (0 -> 1, 1 -> 0) | |
attention_mask = 1 - attention_mask | |
# Reshape to 2D and create 4D attention mask | |
# (batch_size, 1, max_num_tiles * target_length, max_num_tiles * target_length) | |
attention_mask = attention_mask.reshape(batch_size, max_num_tiles * target_length, 1) | |
attention_mask = attention_mask @ attention_mask.transpose(-1, -2) * torch.finfo(dtype).min | |
attention_mask = attention_mask.unsqueeze(1) | |
return attention_mask!=torch.finfo(attention_mask.dtype).min | |
def MllamaPrecomputedAspectRatioEmbedding_forward(self, hidden_state: torch.Tensor, aspect_ratio_ids: torch.Tensor) -> torch.Tensor: | |
embeddings = self.embedding(aspect_ratio_ids) | |
embeddings = embeddings.reshape(-1, self.max_num_tiles, 1, self.hidden_size) | |
if self.is_gated: | |
embeddings = embeddings * self.gate.tanh() | |
hidden_state = hidden_state + embeddings | |
return hidden_state | |
class MllamaPrecomputedAspectRatioEmbedding(nn.Module): | |
def __init__(self, config: MllamaVisionConfig, is_gated: bool = True): | |
super().__init__() | |
self.max_num_tiles = config.max_num_tiles | |
self.hidden_size = config.hidden_size | |
self.max_aspect_ratio_id = config.max_aspect_ratio_id | |
self.is_gated = is_gated | |
self.embedding = nn.Embedding(self.max_aspect_ratio_id + 1, self.max_num_tiles * self.hidden_size) | |
if is_gated: | |
self.gate = nn.Parameter(torch.zeros(1)) | |
def forward(self, hidden_state: torch.Tensor, aspect_ratio_ids: torch.Tensor) -> torch.Tensor: | |
return MllamaPrecomputedAspectRatioEmbedding_forward(self, hidden_state, aspect_ratio_ids) | |
def MllamaPrecomputedPositionEmbedding_forward(self, hidden_state: torch.Tensor, aspect_ratio_ids: torch.Tensor) -> torch.Tensor: | |
# position embeddings | |
gated_position_embedding = (1 - self.gate.tanh()) * self.embedding | |
hidden_state = hidden_state + gated_position_embedding.view(1, 1, self.num_patches, self.hidden_size) | |
# precomputed tile position embeddings | |
tile_position_embedding = self.tile_embedding(aspect_ratio_ids) | |
batch_size = hidden_state.shape[0] | |
tile_position_embedding = tile_position_embedding.reshape( | |
batch_size, self.max_num_tiles, self.num_patches, self.hidden_size | |
) | |
gated_tile_position_embedding = self.gate.tanh() * tile_position_embedding | |
hidden_state = hidden_state + gated_tile_position_embedding | |
return hidden_state | |
class MllamaPrecomputedPositionEmbedding(nn.Module): | |
def __init__(self, config: MllamaVisionConfig): | |
super().__init__() | |
self.max_num_tiles = config.max_num_tiles | |
self.max_aspect_ratio_id = config.max_aspect_ratio_id | |
self.num_patches = (config.image_size // config.patch_size) ** 2 + 1 | |
self.hidden_size = config.hidden_size | |
self.scale = config.hidden_size**-0.5 | |
self.gate = nn.Parameter(torch.zeros(1)) | |
# position embedding | |
position_embedding = torch.randn(self.num_patches, self.hidden_size) | |
self.embedding = nn.Parameter(self.scale * position_embedding) | |
# tile position embedding | |
self.tile_embedding = nn.Embedding( | |
self.max_aspect_ratio_id + 1, self.max_num_tiles * self.num_patches * self.hidden_size | |
) | |
def forward(self, hidden_state: torch.Tensor, aspect_ratio_ids: torch.Tensor) -> torch.Tensor: | |
return MllamaPrecomputedPositionEmbedding_forward(self, hidden_state, aspect_ratio_ids) | |
def MllamaVisionMLP_forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.fc1(hidden_states) | |
hidden_states = self.activation_fn(hidden_states) | |
hidden_states = self.fc2(hidden_states) | |
return hidden_states | |
class MllamaVisionMLP(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.activation_fn = ACT2FN[config.hidden_act] | |
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) | |
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
return MllamaVisionMLP_forward(self, hidden_states) | |
def MllamaVisionAttention_forward( | |
self, | |
hidden_state: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
output_attentions: bool = None, | |
) -> torch.Tensor: | |
query = self.q_proj(hidden_state) | |
key = self.k_proj(hidden_state) | |
value = self.v_proj(hidden_state) | |
batch_size, q_seq_len, _ = query.shape | |
_, kv_seq_len, _ = key.shape | |
query = query.view(batch_size, q_seq_len, self.num_heads, self.head_dim).transpose(1, 2) | |
key = key.view(batch_size, kv_seq_len, self.num_heads, self.head_dim).transpose(1, 2) | |
value = value.view(batch_size, kv_seq_len, self.num_heads, self.head_dim).transpose(1, 2) | |
attn_weights = torch.matmul(query, key.transpose(2, 3)) / math.sqrt(self.head_dim) | |
if attention_mask is not None: # no matter the length, we just slice it | |
causal_mask = attention_mask[:, :, :, : key.shape[-2]] | |
attn_weights = attn_weights + causal_mask | |
# upcast attention to fp32 | |
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) | |
attn_output = torch.matmul(attn_weights, value) | |
attn_output = attn_output.transpose(1, 2).contiguous() | |
attn_output = attn_output.reshape(batch_size, q_seq_len, -1) | |
output = self.o_proj(attn_output) | |
if not output_attentions: | |
attn_weights = None | |
return output, attn_weights | |
class MllamaVisionAttention(nn.Module): | |
def __init__(self, config: MllamaVisionConfig): | |
super().__init__() | |
self.embed_dim = config.hidden_size | |
self.num_heads = config.attention_heads | |
self.head_dim = config.hidden_size // config.attention_heads | |
self.q_proj = nn.Linear(self.embed_dim, self.num_heads * self.head_dim, bias=False) | |
self.k_proj = nn.Linear(self.embed_dim, self.num_heads * self.head_dim, bias=False) | |
self.v_proj = nn.Linear(self.embed_dim, self.num_heads * self.head_dim, bias=False) | |
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.embed_dim, bias=False) | |
def forward( | |
self, | |
hidden_state: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
output_attentions: bool = None, | |
) -> torch.Tensor: | |
return MllamaVisionAttention_forward(self, hidden_state, attention_mask, output_attentions) | |
def MllamaVisionSdpaAttention_forward( | |
self, | |
hidden_state: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
output_attentions: bool = None, | |
) -> torch.Tensor: | |
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented. | |
if output_attentions: raise RuntimeError('Unsloth: Not supported') | |
query = self.q_proj(hidden_state) | |
key = self.k_proj(hidden_state) | |
value = self.v_proj(hidden_state) | |
batch_size, q_seq_len, _ = query.shape | |
_, kv_seq_len, _ = key.shape | |
query = query.view(batch_size, q_seq_len, self.num_heads, self.head_dim) | |
key = key.view(batch_size, kv_seq_len, self.num_heads, self.head_dim) | |
value = value.view(batch_size, kv_seq_len, self.num_heads, self.head_dim) | |
query = query.transpose(1, 2) | |
key = key.transpose(1, 2) | |
value = value.transpose(1, 2) | |
attn_output = F.scaled_dot_product_attention(query, key, value, attn_mask=attention_mask) | |
attn_output = attn_output.transpose(1, 2).contiguous() | |
attn_output = attn_output.reshape(batch_size, q_seq_len, -1) | |
output = self.o_proj(attn_output) | |
return output, None | |
class MllamaVisionSdpaAttention(MllamaVisionAttention): | |
# Adapted from MllamaVisionAttention | |
def forward( | |
self, | |
hidden_state: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
output_attentions: bool = None, | |
) -> torch.Tensor: | |
return MllamaVisionSdpaAttention_forward(self, hidden_state, attention_mask, output_attentions) | |
def MllamaTextRMSNorm_forward(self, hidden_states): | |
input_dtype = hidden_states.dtype | |
hidden_states = hidden_states.to(torch.float32) | |
variance = hidden_states.pow(2).mean(-1, keepdim=True) | |
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) | |
return self.weight * hidden_states.to(input_dtype) | |
class MllamaTextRMSNorm(nn.Module): | |
def __init__(self, hidden_size, eps=1e-6): | |
""" | |
MllamaTextRMSNorm is equivalent to T5LayerNorm | |
""" | |
super().__init__() | |
self.weight = nn.Parameter(torch.ones(hidden_size)) | |
self.variance_epsilon = eps | |
def forward(self, hidden_states): | |
return MllamaTextRMSNorm_forward(self, hidden_states) | |
def extra_repr(self): | |
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" | |
def MllamaTextCrossAttention_forward( | |
self, | |
hidden_states: torch.Tensor, | |
cross_attention_states: Optional[torch.Tensor] = None, | |
past_key_value: Optional[Cache] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
output_attentions: bool = False, | |
use_cache: bool = None, | |
cache_position: Optional[torch.LongTensor] = None, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
"""Input shape: Batch x Time x Channel""" | |
bsz, q_len, _ = hidden_states.size() | |
query_states = self.q_proj(hidden_states) | |
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
query_states = self.q_norm(query_states) | |
if cross_attention_states is not None: | |
key_states = self.k_proj(cross_attention_states) | |
value_states = self.v_proj(cross_attention_states) | |
key_states = key_states.view(bsz, -1, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
value_states = value_states.view(bsz, -1, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
key_states = repeat_kv(key_states, self.num_key_value_groups) | |
value_states = repeat_kv(value_states, self.num_key_value_groups) | |
key_states = self.k_norm(key_states) | |
if past_key_value is not None: | |
# if we have a new image + new tokens, we only computed key_states on that new image | |
# we still update the cross key states, past_image, new_image. And use it! | |
key_states, value_states = past_key_value.update( | |
key_states, value_states, self.layer_idx, {"cache_position": cache_position} | |
) | |
elif cache_position[0] != 0: | |
key_states, value_states = ( | |
past_key_value.key_cache[self.layer_idx], | |
past_key_value.value_cache[self.layer_idx], | |
) | |
else: | |
raise ValueError( | |
"Cross attention layer can't find neither `cross_attn_states` nor cached values for key/values!" | |
) | |
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) | |
if attention_mask is not None: # no matter the length, we just slice it | |
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] | |
attn_weights = attn_weights + causal_mask | |
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) | |
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) | |
attn_output = torch.matmul(attn_weights, value_states) | |
attn_output = attn_output.transpose(1, 2).contiguous() | |
attn_output = attn_output.reshape(bsz, q_len, -1) | |
attn_output = self.o_proj(attn_output) | |
if not output_attentions: | |
attn_weights = None | |
return attn_output, attn_weights, past_key_value | |
class MllamaTextCrossAttention(nn.Module): | |
"""Multi-headed attention from 'Attention Is All You Need' paper""" | |
def __init__( | |
self, | |
config: Optional[MllamaTextConfig] = None, | |
layer_idx: Optional[int] = None, | |
): | |
super().__init__() | |
self.config = config | |
self.num_heads = self.config.num_attention_heads | |
self.num_key_value_heads = self.config.num_key_value_heads | |
self.dropout = config.dropout | |
self.hidden_size = config.hidden_size | |
self.head_dim = config.hidden_size // self.num_heads | |
self.layer_idx = layer_idx | |
self.num_key_value_groups = self.num_heads // self.num_key_value_heads | |
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False) | |
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) | |
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) | |
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) | |
self.q_norm = MllamaTextRMSNorm(self.head_dim, eps=config.rms_norm_eps) | |
self.k_norm = MllamaTextRMSNorm(self.head_dim, eps=config.rms_norm_eps) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
cross_attention_states: Optional[torch.Tensor] = None, | |
past_key_value: Optional[Cache] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
output_attentions: bool = False, | |
use_cache: bool = None, | |
cache_position: Optional[torch.LongTensor] = None, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
return MllamaTextCrossAttention_forward(self, hidden_states, cross_attention_states, past_key_value, attention_mask, output_attentions, use_cache, cache_position) | |
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: | |
""" | |
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, | |
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) | |
""" | |
batch, num_key_value_heads, slen, head_dim = hidden_states.shape | |
if n_rep == 1: | |
return hidden_states | |
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) | |
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) | |
def MllamaTextCrossSdpaAttention_forward( | |
self, | |
hidden_states: torch.Tensor, | |
cross_attention_states: Optional[torch.Tensor] = None, | |
past_key_value: Optional[Cache] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
output_attentions: bool = False, | |
use_cache: bool = None, | |
cache_position: Optional[torch.LongTensor] = None, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
"""Input shape: Batch x Time x Channel""" | |
if output_attentions: raise RuntimeError('Unsloth: Not supported') | |
bsz, q_len, _ = hidden_states.size() | |
query_states = self.q_proj(hidden_states) | |
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
query_states = self.q_norm(query_states) | |
if cross_attention_states is not None: | |
key_states = self.k_proj(cross_attention_states) | |
value_states = self.v_proj(cross_attention_states) | |
key_states = key_states.view(bsz, -1, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
value_states = value_states.view(bsz, -1, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
if past_key_value is not None: | |
# if we have a new image + new tokens, we only computed key_states on that new image | |
# we still update the cross key states, past_image, new_image. And use it! | |
key_states, value_states = past_key_value.update( | |
key_states, value_states, self.layer_idx, {"cache_position": cache_position} | |
) | |
elif cache_position[0] != 0: | |
key_states, value_states = ( | |
past_key_value.key_cache[self.layer_idx], | |
past_key_value.value_cache[self.layer_idx], | |
) | |
else: | |
raise ValueError( | |
"Cross attention layer can't find neither `cross_attn_states` nor cached values for key/values!" | |
) | |
key_states = repeat_kv(key_states, self.num_key_value_groups) | |
value_states = repeat_kv(value_states, self.num_key_value_groups) | |
key_states = self.k_norm(key_states) | |
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask, | |
# Reference: https://github.com/pytorch/pytorch/issues/112577. | |
if query_states.device.type == "cuda" and attention_mask is not None: | |
query_states = query_states.contiguous() | |
key_states = key_states.contiguous() | |
value_states = value_states.contiguous() | |
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment | |
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling. | |
is_causal = True if attention_mask is None and q_len > 1 else False | |
attn_output = torch.nn.functional.scaled_dot_product_attention( | |
query_states, | |
key_states, | |
value_states, | |
attn_mask=attention_mask, | |
dropout_p=self.dropout if self.training else 0.0, | |
is_causal=is_causal, | |
) | |
attn_output = attn_output.transpose(1, 2).contiguous() | |
attn_output = attn_output.reshape(bsz, q_len, -1) | |
attn_output = self.o_proj(attn_output) | |
return attn_output, None, past_key_value | |
class MllamaTextCrossSdpaAttention(MllamaTextCrossAttention): | |
""" | |
Mllama attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from | |
`MllamaTextCrossAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to | |
SDPA API. | |
""" | |
# Adapted from MllamaTextCrossAttention.forward | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
cross_attention_states: Optional[torch.Tensor] = None, | |
past_key_value: Optional[Cache] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
output_attentions: bool = False, | |
use_cache: bool = None, | |
cache_position: Optional[torch.LongTensor] = None, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
return MllamaTextCrossSdpaAttention_forward(self, hidden_states, cross_attention_states, past_key_value, attention_mask, output_attentions, use_cache, cache_position) | |
def rotate_half(x): | |
"""Rotates half the hidden dims of the input.""" | |
x1 = x[..., : x.shape[-1] // 2] | |
x2 = x[..., x.shape[-1] // 2 :] | |
return torch.cat((-x2, x1), dim=-1) | |
def apply_rotary_pos_emb(q, k, cos, sin, unsqueeze_dim=1): | |
"""Applies Rotary Position Embedding to the query and key tensors. | |
Args: | |
q (`torch.Tensor`): The query tensor. | |
k (`torch.Tensor`): The key tensor. | |
cos (`torch.Tensor`): The cosine part of the rotary embedding. | |
sin (`torch.Tensor`): The sine part of the rotary embedding. | |
position_ids (`torch.Tensor`, *optional*): | |
Deprecated and unused. | |
unsqueeze_dim (`int`, *optional*, defaults to 1): | |
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and | |
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note | |
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and | |
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes | |
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have | |
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. | |
Returns: | |
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. | |
""" | |
cos = cos.unsqueeze(unsqueeze_dim) | |
sin = sin.unsqueeze(unsqueeze_dim) | |
q_embed = (q * cos) + (rotate_half(q) * sin) | |
k_embed = (k * cos) + (rotate_half(k) * sin) | |
return q_embed, k_embed | |
def MllamaTextSelfAttention_forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: torch.Tensor, | |
position_embeddings: torch.Tensor, | |
output_attentions: bool = False, | |
use_cache: bool = False, | |
past_key_value=None, | |
cache_position=None, | |
**kwargs, | |
): | |
bsz, q_len, _ = hidden_states.size() | |
query_states = self.q_proj(hidden_states) | |
key_states = self.k_proj(hidden_states) | |
value_states = self.v_proj(hidden_states) | |
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
cos, sin = position_embeddings | |
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) | |
if past_key_value is not None: | |
# sin and cos are specific to RoPE models; cache_position needed for the static cache | |
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} | |
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | |
key_states = repeat_kv(key_states, self.num_key_value_groups) | |
value_states = repeat_kv(value_states, self.num_key_value_groups) | |
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) | |
if attention_mask is not None: # no matter the length, we just slice it | |
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] | |
attn_weights = attn_weights + causal_mask | |
# upcast attention to fp32 | |
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) | |
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) | |
attn_output = torch.matmul(attn_weights, value_states) | |
attn_output = attn_output.transpose(1, 2).contiguous() | |
attn_output = attn_output.view(bsz, q_len, -1) | |
attn_output = self.o_proj(attn_output) | |
if not output_attentions: | |
attn_weights = None | |
return attn_output, attn_weights, past_key_value | |
class MllamaTextSelfAttention(nn.Module): | |
def __init__(self, config: MllamaTextConfig, layer_idx: int): | |
super().__init__() | |
self.config = config | |
self.num_heads = config.num_attention_heads | |
self.dropout = config.dropout | |
self.hidden_size = config.hidden_size | |
self.num_key_value_heads = config.num_key_value_heads | |
self.head_dim = config.hidden_size // self.num_heads | |
self.num_key_value_groups = self.num_heads // self.num_key_value_heads | |
self.rope_theta = config.rope_theta | |
self.layer_idx = layer_idx | |
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False) | |
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) | |
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) | |
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: torch.Tensor, | |
position_embeddings: torch.Tensor, | |
output_attentions: bool = False, | |
use_cache: bool = False, | |
past_key_value=None, | |
cache_position=None, | |
**kwargs, | |
): | |
return MllamaTextSelfAttention_forward(self, hidden_states, attention_mask, position_embeddings, output_attentions, use_cache, past_key_value, cache_position, **kwargs) | |
def MllamaTextSelfSdpaAttention_forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: torch.Tensor, | |
position_embeddings: torch.Tensor, | |
output_attentions: bool = False, | |
use_cache: bool = False, | |
past_key_value=None, | |
cache_position=None, | |
**kwargs, | |
): | |
if output_attentions: raise RuntimeError('Unsloth: Not supported') | |
bsz, q_len, _ = hidden_states.size() | |
query_states = self.q_proj(hidden_states) | |
key_states = self.k_proj(hidden_states) | |
value_states = self.v_proj(hidden_states) | |
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
cos, sin = position_embeddings | |
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) | |
if past_key_value is not None: | |
# sin and cos are specific to RoPE models; cache_position needed for the static cache | |
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} | |
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | |
key_states = repeat_kv(key_states, self.num_key_value_groups) | |
value_states = repeat_kv(value_states, self.num_key_value_groups) | |
causal_mask = attention_mask | |
if attention_mask is not None: | |
causal_mask = causal_mask[:, :, :, : key_states.shape[-2]] | |
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask, | |
# Reference: https://github.com/pytorch/pytorch/issues/112577. | |
if query_states.device.type == "cuda" and causal_mask is not None: | |
query_states = query_states.contiguous() | |
key_states = key_states.contiguous() | |
value_states = value_states.contiguous() | |
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment | |
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling. | |
is_causal = True if causal_mask is None and q_len > 1 else False | |
attn_output = torch.nn.functional.scaled_dot_product_attention( | |
query_states, | |
key_states, | |
value_states, | |
attn_mask=causal_mask, | |
dropout_p=self.dropout if self.training else 0.0, | |
is_causal=is_causal, | |
) | |
attn_output = attn_output.transpose(1, 2).contiguous() | |
attn_output = attn_output.view(bsz, q_len, -1) | |
attn_output = self.o_proj(attn_output) | |
return attn_output, None, past_key_value | |
class MllamaTextSelfSdpaAttention(MllamaTextSelfAttention): | |
# Adapted from MllamaTextSelfAttention | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: torch.Tensor, | |
position_embeddings: torch.Tensor, | |
output_attentions: bool = False, | |
use_cache: bool = False, | |
past_key_value=None, | |
cache_position=None, | |
**kwargs, | |
): | |
return MllamaTextSelfSdpaAttention_forward(self, hidden_states, attention_mask, position_embeddings, output_attentions, use_cache, past_key_value, cache_position, **kwargs) | |
def MllamaTextMLP_forward(self, x): | |
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) | |
class MllamaTextMLP(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.hidden_size = config.hidden_size | |
self.intermediate_size = config.intermediate_size | |
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) | |
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) | |
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) | |
# Ignore copy | |
self.act_fn = ACT2FN[config.hidden_act] | |
def forward(self, x): | |
return MllamaTextMLP_forward(self, x) | |
def MllamaRotaryEmbedding_forward(self, x, position_ids): | |
if "dynamic" in self.rope_type: | |
self._dynamic_frequency_update(position_ids, device=x.device) | |
# Core RoPE block | |
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) | |
position_ids_expanded = position_ids[:, None, :].float() | |
# Force float32 (see https://github.com/huggingface/transformers/pull/29285) | |
device_type = x.device.type | |
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" | |
with torch.autocast(device_type=device_type, enabled=False): | |
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) | |
emb = torch.cat((freqs, freqs), dim=-1) | |
cos = emb.cos() | |
sin = emb.sin() | |
# Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention | |
cos = cos * self.attention_scaling | |
sin = sin * self.attention_scaling | |
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) | |
class MllamaRotaryEmbedding(nn.Module): | |
def __init__(self, config: MllamaTextConfig, device=None): | |
super().__init__() | |
self.rope_type = config.rope_scaling["rope_type"] | |
self.max_seq_len_cached = config.max_position_embeddings | |
self.original_max_seq_len = config.max_position_embeddings | |
self.config = config | |
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] | |
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) | |
self.register_buffer("inv_freq", inv_freq, persistent=False) | |
self.original_inv_freq = self.inv_freq | |
def _dynamic_frequency_update(self, position_ids, device): | |
""" | |
dynamic RoPE layers should recompute `inv_freq` in the following situations: | |
1 - growing beyond the cached sequence length (allow scaling) | |
2 - the current sequence length is in the original scale (avoid losing precision with small sequences) | |
""" | |
seq_len = torch.max(position_ids) + 1 | |
if seq_len > self.max_seq_len_cached: # growth | |
inv_freq, self.attention_scaling = self.rope_init_fn( | |
self.config, device, seq_len=seq_len, **self.rope_kwargs | |
) | |
self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation | |
self.max_seq_len_cached = seq_len | |
if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset | |
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False) | |
self.max_seq_len_cached = self.original_max_seq_len | |
def forward(self, x, position_ids): | |
return MllamaRotaryEmbedding_forward(self, x, position_ids) | |