File size: 4,780 Bytes
8ccf632
 
 
 
3b76ae1
0a30c9c
 
 
 
3b76ae1
0a30c9c
 
 
 
 
 
 
 
 
 
 
 
06f0278
 
8ccf632
5c4c947
8ccf632
06f0278
8ccf632
0a30c9c
 
 
 
 
 
 
8291039
 
 
3b76ae1
8291039
 
0a30c9c
27495d6
b213a9c
54192f0
 
8ccf632
 
0a30c9c
 
 
 
 
1e787e4
0a30c9c
 
 
 
 
 
8ccf632
06f0278
 
 
8ccf632
 
 
 
 
e2944a6
8ccf632
 
 
 
 
dc55004
26a7c6b
a992e53
8ccf632
 
 
 
 
 
 
 
 
 
 
 
0a30c9c
8ccf632
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b213a9c
 
 
 
ceb48e8
 
b213a9c
8ccf632
 
 
 
 
b213a9c
8ccf632
 
 
0a30c9c
 
 
 
8ccf632
 
 
2b62414
0a30c9c
 
 
8ccf632
 
3b76ae1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import gradio as gr
import numpy as np
import random
import torch
from diffusers import DiffusionPipeline
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
import boto3
from io import BytesIO
import time
import os

# S3 Configuration
S3_BUCKET = "afri"
S3_REGION = "eu-west-3"
S3_ACCESS_KEY_ID = "AKIAQQABC7IQWFLKSE62"
S3_SECRET_ACCESS_KEY = "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"

# Set up S3 client
s3_client = boto3.client('s3', 
                         region_name=S3_REGION,
                         aws_access_key_id=S3_ACCESS_KEY_ID,
                         aws_secret_access_key=S3_SECRET_ACCESS_KEY)

dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16).to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048

def save_image_to_s3(image):
    img_byte_arr = BytesIO()
    image.save(img_byte_arr, format='PNG')
    img_byte_arr = img_byte_arr.getvalue()

    filename = f"generated_image_{int(time.time())}.png"

    s3_client.put_object(Bucket=S3_BUCKET, 
                         Key=filename, 
                         Body=img_byte_arr, 
                         ContentType='image/png')

    url = f"https://{S3_BUCKET}.s3.{S3_REGION}.amazonaws.com/{filename}"
    return url

def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=5.0, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator().manual_seed(seed)
    image = pipe(
        prompt=prompt, 
        width=width,
        height=height,
        num_inference_steps=num_inference_steps, 
        generator=generator,
        guidance_scale=guidance_scale
    ).images[0]
    
    image_url = save_image_to_s3(image)
    
    return image_url, seed

examples = [
    "a tiny astronaut hatching from an egg on the moon",
    "a cat holding a sign that says hello world",
    "an anime illustration of a wiener schnitzel",
]

css="""
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""# FLUX.1 [dev]
12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)  
[[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
        """)
        
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            run_button = gr.Button("Run", scale=0)
        
        result = gr.Text(label="Image URL", show_label=True)
        
        with gr.Accordion("Advanced Settings", open=False):
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance Scale",
                    minimum=1,
                    maximum=15,
                    step=0.1,
                    value=3.5,
                )
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=28,
                )
        
        gr.Examples(
            examples=examples,
            fn=infer,
            inputs=[prompt],
            outputs=[result, seed],
            cache_examples="lazy"
        )
    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
        outputs=[result, seed]
    )

demo.launch(share=True)