AgentVerse's picture
bump version to 0.1.8
01523b5
from __future__ import annotations
from typing import TYPE_CHECKING, List, Tuple
from . import evaluator_registry
from .base import BaseEvaluator
if TYPE_CHECKING:
from agentverse.agents import EvaluatorAgent
from agentverse.message import EvaluatorMessage, SolverMessage, ExecutorMessage
@evaluator_registry.register("basic")
class BasicEvaluator(BaseEvaluator):
cnt_agents: int = 0
def step(
self,
agent: EvaluatorAgent,
solution: List[SolverMessage],
result: List[ExecutorMessage],
task_description: str,
all_role_description: List[str],
*args,
**kwargs,
) -> EvaluatorMessage:
flatten_solution = "\n".join([s.content for s in solution])
flatten_result = "\n".join([r.content for r in result])
flatten_all_role_description = "\n".join(all_role_description)
evaluation = agent.step(
flatten_solution,
flatten_result,
task_description,
flatten_all_role_description,
)
return evaluation
@evaluator_registry.register("basic-message")
class BasicEvaluator(BaseEvaluator):
cnt_agents: int = 0
def step(
self,
agent: EvaluatorAgent,
solution: List[SolverMessage],
result: List[ExecutorMessage],
task_description: str,
all_role_description: List[str],
*args,
**kwargs,
) -> EvaluatorMessage:
flatten_solution = "\n".join([s.content for s in solution])
flatten_result = "\n".join([r.content for r in result])
flatten_all_role_description = "\n".join(all_role_description)
agent.add_message_to_memory(result)
evaluation = agent.step(
flatten_solution,
flatten_result,
task_description,
flatten_all_role_description,
)
agent.add_message_to_memory([evaluation])
return evaluation