CodeReviewAgent / src /services /report_generator.py
c1r3x's picture
Review Agent: Removed the pdf export
1e22c34
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Report Generator Service
This module provides functionality for generating comprehensive code review reports
in various formats based on the analysis results.
"""
import os
import json
import logging
import datetime
from pathlib import Path
import markdown
import csv
logger = logging.getLogger(__name__)
class ReportGenerator:
"""
Service for generating code review reports in various formats.
"""
def __init__(self, output_dir="reports"):
"""
Initialize the ReportGenerator.
Args:
output_dir (str): Directory to save generated reports.
"""
# Use absolute path for output directory
if not os.path.isabs(output_dir):
# Get the absolute path relative to the project root
project_root = os.path.abspath(os.path.join(os.path.dirname(__file__), '..', '..'))
self.output_dir = os.path.join(project_root, output_dir)
else:
self.output_dir = output_dir
os.makedirs(self.output_dir, exist_ok=True)
logger.info(f"Initialized ReportGenerator with output directory: {self.output_dir}")
def generate_report(self, repo_name, results, format_type="all"):
"""
Generate a report based on the analysis results.
Args:
repo_name (str): Name of the repository.
results (dict): Analysis results.
format_type (str): Report format type (json, html, csv, or all).
Returns:
dict: Paths to the generated reports.
"""
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
report_name = f"{repo_name}_{timestamp}"
report_paths = {}
# Create report content
report_content = self._create_report_content(repo_name, results)
# Generate reports in requested formats
if format_type in ["json", "all"]:
json_path = self._generate_json_report(report_name, report_content)
report_paths["json"] = json_path
if format_type in ["html", "all"]:
html_path = self._generate_html_report(report_name, report_content)
report_paths["html"] = html_path
if format_type in ["csv", "all"]:
csv_path = self._generate_csv_report(report_name, report_content)
report_paths["csv"] = csv_path
logger.info(f"Generated {len(report_paths)} report(s) for {repo_name}")
return report_paths
def _create_report_content(self, repo_name, results):
"""
Create the content for the report.
Args:
repo_name (str): Name of the repository.
results (dict): Analysis results.
Returns:
dict: Structured report content.
"""
# Extract repository info and metrics
repo_info = results.get("repository_info", {})
total_files = repo_info.get("file_count", 0)
repo_size = repo_info.get("size_bytes", 0)
# Extract code analysis results
code_analysis = results.get("code_analysis", {})
total_code_issues = sum(len(lang_result.get("issues", [])) for lang_result in code_analysis.values())
critical_code_issues = sum(1 for lang_result in code_analysis.values()
for issue in lang_result.get("issues", [])
if issue.get("severity", "").lower() == "critical")
# Extract security scan results
security_scan = results.get("security", {})
total_vulnerabilities = sum(len(lang_result.get("vulnerabilities", []))
for lang_result in security_scan.get("vulnerabilities_by_language", {}).values())
critical_vulnerabilities = len(security_scan.get("critical_vulnerabilities", []))
# Extract performance analysis results
performance_analysis = results.get("performance", {})
total_performance_issues = sum(len(lang_result.get("issues", []))
for lang_result in performance_analysis.get("issues_by_language", {}).values())
performance_hotspots = len(performance_analysis.get("hotspots", []))
# Calculate overall score and rating
max_score = 100
deductions = {
"code_issues": total_code_issues * 2,
"critical_code_issues": critical_code_issues * 5,
"vulnerabilities": total_vulnerabilities * 3,
"critical_vulnerabilities": critical_vulnerabilities * 10,
"performance_issues": total_performance_issues * 2,
"performance_hotspots": performance_hotspots * 3
}
overall_score = max(0, max_score - sum(deductions.values()))
quality_ratings = [
(95, "Excellent"),
(85, "Very Good"),
(75, "Good"),
(65, "Fair"),
(0, "Poor")
]
quality_rating = next(rating for threshold, rating in quality_ratings if overall_score >= threshold)
# Extract language breakdown
language_breakdown = {}
for language in code_analysis.keys():
if code_analysis[language].get("status") != "error":
language_breakdown[language] = {
"files": len([f for f in code_analysis[language].get("issues", []) if "file" in f]),
"lines": code_analysis[language].get("total_lines", 0),
"percentage": code_analysis[language].get("percentage", 0),
"issues": len(code_analysis[language].get("issues", []))
}
# Extract AI review results
ai_review = results.get("ai_review", {})
# Calculate summary metrics
summary_metrics = self._calculate_summary_metrics(results)
# Create report structure
report = {
"metadata": {
"repository_name": repo_name,
"report_date": datetime.datetime.now().isoformat(),
"repository_info": repo_info,
},
"summary": {
"metrics": summary_metrics,
"language_breakdown": language_breakdown,
"executive_summary": ai_review.get("summary", "No AI review summary available."),
},
"code_quality": {
"issues_by_language": code_analysis,
"top_issues": self._extract_top_issues(code_analysis),
},
"security": {
"vulnerabilities_by_language": security_scan,
"critical_vulnerabilities": self._extract_critical_vulnerabilities(security_scan),
},
"performance": {
"issues_by_language": performance_analysis.get("language_results", {}),
"hotspots": performance_analysis.get("hotspots", []),
},
"ai_review": {
"file_reviews": ai_review.get("reviews", {}),
"summary": ai_review.get("summary", "No AI review summary available."),
},
"recommendations": self._generate_recommendations(results),
}
return report
def _calculate_summary_metrics(self, results):
"""
Calculate summary metrics from the analysis results.
Args:
results (dict): Analysis results.
Returns:
dict: Summary metrics.
"""
metrics = {
"total_files": results.get("repository_info", {}).get("file_count", 0),
"repository_size": results.get("repository_info", {}).get("size", 0),
}
# Count code quality issues
code_analysis = results.get("code_analysis", {})
total_issues = 0
critical_issues = 0
for language, language_results in code_analysis.items():
total_issues += language_results.get("issue_count", 0)
for issue in language_results.get("issues", []):
if issue.get("severity", "").lower() in ["critical", "high"]:
critical_issues += 1
metrics["total_code_issues"] = total_issues
metrics["critical_code_issues"] = critical_issues
# Count security vulnerabilities
security_scan = results.get("security_scan", {})
total_vulnerabilities = 0
critical_vulnerabilities = 0
for language, language_results in security_scan.items():
total_vulnerabilities += language_results.get("vulnerability_count", 0)
for vuln in language_results.get("vulnerabilities", []):
if vuln.get("severity", "").lower() in ["critical", "high"]:
critical_vulnerabilities += 1
metrics["total_vulnerabilities"] = total_vulnerabilities
metrics["critical_vulnerabilities"] = critical_vulnerabilities
# Count performance issues
performance_analysis = results.get("performance_analysis", {})
total_performance_issues = 0
for language, language_results in performance_analysis.get("language_results", {}).items():
total_performance_issues += language_results.get("issue_count", 0)
metrics["total_performance_issues"] = total_performance_issues
metrics["performance_hotspots"] = len(performance_analysis.get("hotspots", []))
# Calculate overall score (0-100)
# This is a simple scoring algorithm that can be refined
base_score = 100
deductions = 0
# Deduct for code issues (more weight for critical issues)
if metrics["total_files"] > 0:
code_issue_ratio = metrics["total_code_issues"] / metrics["total_files"]
deductions += min(30, code_issue_ratio * 100)
deductions += min(20, (metrics["critical_code_issues"] / metrics["total_files"]) * 200)
# Deduct for security vulnerabilities (heavy weight for critical vulnerabilities)
if metrics["total_files"] > 0:
deductions += min(30, (metrics["total_vulnerabilities"] / metrics["total_files"]) * 150)
deductions += min(40, (metrics["critical_vulnerabilities"] / metrics["total_files"]) * 300)
# Deduct for performance issues
if metrics["total_files"] > 0:
deductions += min(20, (metrics["total_performance_issues"] / metrics["total_files"]) * 80)
deductions += min(10, (metrics["performance_hotspots"] / metrics["total_files"]) * 100)
metrics["overall_score"] = max(0, min(100, base_score - deductions))
# Determine quality rating based on score
if metrics["overall_score"] >= 90:
metrics["quality_rating"] = "Excellent"
elif metrics["overall_score"] >= 80:
metrics["quality_rating"] = "Good"
elif metrics["overall_score"] >= 70:
metrics["quality_rating"] = "Satisfactory"
elif metrics["overall_score"] >= 50:
metrics["quality_rating"] = "Needs Improvement"
else:
metrics["quality_rating"] = "Poor"
return metrics
def _extract_top_issues(self, code_analysis, limit=10):
"""
Extract the top code quality issues from the analysis results.
Args:
code_analysis (dict): Code analysis results.
limit (int): Maximum number of issues to extract.
Returns:
list: Top code quality issues.
"""
all_issues = []
for language, language_results in code_analysis.items():
for issue in language_results.get("issues", []):
# Add language to the issue
issue["language"] = language
all_issues.append(issue)
# Sort issues by severity and then by line count if available
severity_order = {"critical": 0, "high": 1, "medium": 2, "low": 3, "info": 4}
def issue_sort_key(issue):
severity = issue.get("severity", "").lower()
severity_value = severity_order.get(severity, 5)
return (severity_value, -issue.get("line_count", 0))
sorted_issues = sorted(all_issues, key=issue_sort_key)
return sorted_issues[:limit]
def _extract_critical_vulnerabilities(self, security_scan, limit=10):
"""
Extract critical security vulnerabilities from the scan results.
Args:
security_scan (dict): Security scan results.
limit (int): Maximum number of vulnerabilities to extract.
Returns:
list: Critical security vulnerabilities.
"""
all_vulnerabilities = []
for language, language_results in security_scan.items():
for vuln in language_results.get("vulnerabilities", []):
# Add language to the vulnerability
vuln["language"] = language
all_vulnerabilities.append(vuln)
# Sort vulnerabilities by severity
severity_order = {"critical": 0, "high": 1, "medium": 2, "low": 3, "info": 4}
def vuln_sort_key(vuln):
severity = vuln.get("severity", "").lower()
severity_value = severity_order.get(severity, 5)
return severity_value
sorted_vulnerabilities = sorted(all_vulnerabilities, key=vuln_sort_key)
return sorted_vulnerabilities[:limit]
def _generate_recommendations(self, results):
"""
Generate recommendations based on the analysis results.
Args:
results (dict): Analysis results.
Returns:
dict: Recommendations categorized by priority.
"""
recommendations = {
"high_priority": [],
"medium_priority": [],
"low_priority": [],
}
# Extract critical security vulnerabilities as high priority recommendations
security_scan = results.get("security_scan", {})
for language, language_results in security_scan.items():
for vuln in language_results.get("vulnerabilities", []):
if vuln.get("severity", "").lower() in ["critical", "high"]:
recommendations["high_priority"].append({
"type": "security",
"language": language,
"issue": vuln.get("issue", "Unknown vulnerability"),
"description": vuln.get("description", ""),
"file": vuln.get("file", ""),
"line": vuln.get("line", ""),
"recommendation": vuln.get("recommendation", "Fix this security vulnerability."),
})
# Extract critical code quality issues as medium priority recommendations
code_analysis = results.get("code_analysis", {})
for language, language_results in code_analysis.items():
for issue in language_results.get("issues", []):
if issue.get("severity", "").lower() in ["critical", "high"]:
recommendations["medium_priority"].append({
"type": "code_quality",
"language": language,
"issue": issue.get("issue", "Unknown issue"),
"description": issue.get("description", ""),
"file": issue.get("file", ""),
"line": issue.get("line", ""),
"recommendation": issue.get("recommendation", "Address this code quality issue."),
})
# Extract performance hotspots as medium priority recommendations
performance_analysis = results.get("performance_analysis", {})
for hotspot in performance_analysis.get("hotspots", []):
recommendations["medium_priority"].append({
"type": "performance",
"language": hotspot.get("language", ""),
"issue": "Performance Hotspot",
"description": f"File contains {hotspot.get('issue_count', 0)} performance issues",
"file": hotspot.get("file", ""),
"recommendation": "Optimize this file to improve performance.",
})
# Extract other performance issues as low priority recommendations
for language, language_results in performance_analysis.get("language_results", {}).items():
for issue in language_results.get("issues", []):
# Skip issues that are already part of hotspots
if any(hotspot.get("file", "") == issue.get("file", "") for hotspot in performance_analysis.get("hotspots", [])):
continue
recommendations["low_priority"].append({
"type": "performance",
"language": language,
"issue": issue.get("issue", "Unknown issue"),
"description": issue.get("description", ""),
"file": issue.get("file", ""),
"line": issue.get("line", ""),
"recommendation": issue.get("recommendation", "Consider optimizing this code."),
})
# Extract AI review suggestions as recommendations
ai_review = results.get("ai_review", {})
for file_path, review in ai_review.get("reviews", {}).items():
for suggestion in review.get("suggestions", []):
priority = "medium_priority"
if "security" in suggestion.get("section", "").lower():
priority = "high_priority"
elif "performance" in suggestion.get("section", "").lower():
priority = "low_priority"
recommendations[priority].append({
"type": "ai_review",
"language": "", # AI review doesn't specify language
"issue": suggestion.get("section", "AI Suggestion"),
"description": suggestion.get("description", ""),
"file": file_path,
"line": suggestion.get("line", ""),
"recommendation": suggestion.get("details", ""),
})
# Limit the number of recommendations in each category
limit = 15
recommendations["high_priority"] = recommendations["high_priority"][:limit]
recommendations["medium_priority"] = recommendations["medium_priority"][:limit]
recommendations["low_priority"] = recommendations["low_priority"][:limit]
return recommendations
def _generate_json_report(self, report_name, report_content):
"""
Generate a JSON report.
Args:
report_name (str): Name of the report.
report_content (dict): Report content.
Returns:
str: Path to the generated report.
"""
report_path = os.path.join(self.output_dir, f"{report_name}.json")
with open(report_path, "w", encoding="utf-8") as f:
json.dump(report_content, f, indent=2, ensure_ascii=False)
logger.info(f"Generated JSON report: {report_path}")
return report_path
def _generate_html_report(self, report_name, report_content):
"""
Generate an HTML report.
Args:
report_name (str): Name of the report.
report_content (dict): Report content.
Returns:
str: Path to the generated report.
"""
report_path = os.path.join(self.output_dir, f"{report_name}.html")
# Convert report content to markdown
md_content = self._convert_to_markdown(report_content)
# Convert markdown to HTML
html_content = markdown.markdown(md_content, extensions=["tables", "fenced_code"])
# Add CSS styling
html_content = f"""
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>Code Review Report: {report_content['metadata']['repository_name']}</title>
<style>
body {{font-family: Arial, sans-serif; line-height: 1.6; max-width: 1200px; margin: 0 auto; padding: 20px;}}
h1, h2, h3, h4 {{color: #333; margin-top: 30px;}}
h1 {{border-bottom: 2px solid #333; padding-bottom: 10px;}}
h2 {{border-bottom: 1px solid #ccc; padding-bottom: 5px;}}
table {{border-collapse: collapse; width: 100%; margin: 20px 0;}}
th, td {{text-align: left; padding: 12px; border-bottom: 1px solid #ddd;}}
th {{background-color: #f2f2f2;}}
tr:hover {{background-color: #f5f5f5;}}
.metric-card {{background-color: #f9f9f9; border-radius: 5px; padding: 15px; margin: 10px 0; box-shadow: 0 2px 4px rgba(0,0,0,0.1);}}
.metric-value {{font-size: 24px; font-weight: bold; color: #333;}}
.metric-label {{font-size: 14px; color: #666;}}
.severity-critical {{color: #d9534f; font-weight: bold;}}
.severity-high {{color: #f0ad4e; font-weight: bold;}}
.severity-medium {{color: #5bc0de; font-weight: bold;}}
.severity-low {{color: #5cb85c; font-weight: bold;}}
.metrics-container {{display: flex; flex-wrap: wrap; gap: 20px; justify-content: space-between;}}
.metric-card {{flex: 1; min-width: 200px;}}
pre {{background-color: #f5f5f5; padding: 15px; border-radius: 5px; overflow-x: auto;}}
code {{font-family: Consolas, Monaco, 'Andale Mono', monospace; font-size: 14px;}}
.recommendation {{background-color: #f9f9f9; border-left: 4px solid #5bc0de; padding: 10px; margin: 10px 0;}}
.high-priority {{border-left-color: #d9534f;}}
.medium-priority {{border-left-color: #f0ad4e;}}
.low-priority {{border-left-color: #5cb85c;}}
</style>
</head>
<body>
{html_content}
</body>
</html>
"""
with open(report_path, "w", encoding="utf-8") as f:
f.write(html_content)
logger.info(f"Generated HTML report: {report_path}")
return report_path
def _generate_csv_report(self, report_name, report_content):
"""
Generate a CSV report with issues and recommendations.
Args:
report_name (str): Name of the report.
report_content (dict): Report content.
Returns:
str: Path to the generated report.
"""
report_path = os.path.join(self.output_dir, f"{report_name}.csv")
# Collect all issues and recommendations
rows = []
# Add code quality issues
for language, language_results in report_content["code_quality"]["issues_by_language"].items():
for issue in language_results.get("issues", []):
rows.append({
"Type": "Code Quality",
"Language": language,
"Severity": issue.get("severity", ""),
"Issue": issue.get("issue", ""),
"Description": issue.get("description", ""),
"File": issue.get("file", ""),
"Line": issue.get("line", ""),
"Recommendation": issue.get("recommendation", ""),
})
# Add security vulnerabilities
for language, language_results in report_content["security"]["vulnerabilities_by_language"].items():
for vuln in language_results.get("vulnerabilities", []):
rows.append({
"Type": "Security",
"Language": language,
"Severity": vuln.get("severity", ""),
"Issue": vuln.get("issue", ""),
"Description": vuln.get("description", ""),
"File": vuln.get("file", ""),
"Line": vuln.get("line", ""),
"Recommendation": vuln.get("recommendation", ""),
})
# Add performance issues
for language, language_results in report_content["performance"]["issues_by_language"].items():
for issue in language_results.get("issues", []):
rows.append({
"Type": "Performance",
"Language": language,
"Severity": issue.get("severity", "Medium"),
"Issue": issue.get("issue", ""),
"Description": issue.get("description", ""),
"File": issue.get("file", ""),
"Line": issue.get("line", ""),
"Recommendation": issue.get("recommendation", ""),
})
# Add AI review suggestions
for file_path, review in report_content["ai_review"]["file_reviews"].items():
for suggestion in review.get("suggestions", []):
rows.append({
"Type": "AI Review",
"Language": "",
"Severity": "",
"Issue": suggestion.get("section", ""),
"Description": suggestion.get("description", ""),
"File": file_path,
"Line": suggestion.get("line", ""),
"Recommendation": suggestion.get("details", ""),
})
# Write to CSV
with open(report_path, "w", newline="", encoding="utf-8") as f:
fieldnames = ["Type", "Language", "Severity", "Issue", "Description", "File", "Line", "Recommendation"]
writer = csv.DictWriter(f, fieldnames=fieldnames)
writer.writeheader()
writer.writerows(rows)
logger.info(f"Generated CSV report: {report_path}")
return report_path
def _convert_to_markdown(self, report_content):
"""
Convert report content to markdown format.
Args:
report_content (dict): Report content.
Returns:
str: Markdown formatted report.
"""
md = []
# Title and metadata
md.append(f"# Code Review Report: {report_content['metadata']['repository_name']}")
md.append(f"**Report Date:** {report_content['metadata']['report_date']}")
md.append("")
# Repository info
repo_info = report_content['metadata']['repository_info']
md.append("## Repository Information")
md.append(f"**Branch:** {repo_info.get('branch', 'N/A')}")
md.append(f"**Commit:** {repo_info.get('commit', 'N/A')}")
md.append(f"**Remote URL:** {repo_info.get('remote_url', 'N/A')}")
md.append(f"**Size:** {repo_info.get('size', 0)} bytes")
md.append(f"**File Count:** {repo_info.get('file_count', 0)}")
md.append("")
# Summary metrics
md.append("## Executive Summary")
metrics = report_content['summary']['metrics']
md.append(f"**Overall Score:** {metrics.get('overall_score', 0)}/100")
md.append(f"**Quality Rating:** {metrics.get('quality_rating', 'N/A')}")
md.append("")
md.append("### Key Metrics")
md.append("| Metric | Value |")
md.append("| ------ | ----- |")
md.append(f"| Total Files | {metrics.get('total_files', 0)} |")
md.append(f"| Code Quality Issues | {metrics.get('total_code_issues', 0)} |")
md.append(f"| Critical Code Issues | {metrics.get('critical_code_issues', 0)} |")
md.append(f"| Security Vulnerabilities | {metrics.get('total_vulnerabilities', 0)} |")
md.append(f"| Critical Vulnerabilities | {metrics.get('critical_vulnerabilities', 0)} |")
md.append(f"| Performance Issues | {metrics.get('total_performance_issues', 0)} |")
md.append(f"| Performance Hotspots | {metrics.get('performance_hotspots', 0)} |")
md.append("")
# Language breakdown
md.append("### Language Breakdown")
language_breakdown = report_content['summary']['language_breakdown']
md.append("| Language | Files | Lines | Percentage |")
md.append("| -------- | ----- | ----- | ---------- |")
for language, stats in language_breakdown.items():
md.append(f"| {language} | {stats.get('files', 0)} | {stats.get('lines', 0)} | {stats.get('percentage', 0)}% |")
md.append("")
# Executive summary from AI review
md.append("### Executive Summary")
md.append(report_content['summary']['executive_summary'])
md.append("")
# Code quality issues
md.append("## Code Quality Analysis")
md.append("### Top Issues")
top_issues = report_content['code_quality']['top_issues']
if top_issues:
md.append("| Severity | Language | Issue | File | Line |")
md.append("| -------- | -------- | ----- | ---- | ---- |")
for issue in top_issues:
md.append(f"| {issue.get('severity', 'N/A')} | {issue.get('language', 'N/A')} | {issue.get('issue', 'N/A')} | {issue.get('file', 'N/A')} | {issue.get('line', 'N/A')} |")
else:
md.append("No code quality issues found.")
md.append("")
# Security vulnerabilities
md.append("## Security Analysis")
md.append("### Critical Vulnerabilities")
critical_vulnerabilities = report_content['security']['critical_vulnerabilities']
if critical_vulnerabilities:
md.append("| Severity | Language | Vulnerability | File | Line |")
md.append("| -------- | -------- | ------------- | ---- | ---- |")
for vuln in critical_vulnerabilities:
md.append(f"| {vuln.get('severity', 'N/A')} | {vuln.get('language', 'N/A')} | {vuln.get('issue', 'N/A')} | {vuln.get('file', 'N/A')} | {vuln.get('line', 'N/A')} |")
else:
md.append("No critical security vulnerabilities found.")
md.append("")
# Performance analysis
md.append("## Performance Analysis")
md.append("### Performance Hotspots")
hotspots = report_content['performance']['hotspots']
if hotspots:
md.append("| Language | File | Issue Count |")
md.append("| -------- | ---- | ----------- |")
for hotspot in hotspots:
md.append(f"| {hotspot.get('language', 'N/A')} | {hotspot.get('file', 'N/A')} | {hotspot.get('issue_count', 0)} |")
else:
md.append("No performance hotspots found.")
md.append("")
# Recommendations
md.append("## Recommendations")
# High priority recommendations
md.append("### High Priority")
high_priority = report_content['recommendations']['high_priority']
if high_priority:
for i, rec in enumerate(high_priority, 1):
md.append(f"**{i}. {rec.get('issue', 'Recommendation')}**")
md.append(f"- **Type:** {rec.get('type', 'N/A')}")
md.append(f"- **File:** {rec.get('file', 'N/A')}")
if rec.get('line'):
md.append(f"- **Line:** {rec.get('line')}")
md.append(f"- **Description:** {rec.get('description', 'N/A')}")
md.append(f"- **Recommendation:** {rec.get('recommendation', 'N/A')}")
md.append("")
else:
md.append("No high priority recommendations.")
md.append("")
# Medium priority recommendations
md.append("### Medium Priority")
medium_priority = report_content['recommendations']['medium_priority']
if medium_priority:
for i, rec in enumerate(medium_priority, 1):
md.append(f"**{i}. {rec.get('issue', 'Recommendation')}**")
md.append(f"- **Type:** {rec.get('type', 'N/A')}")
md.append(f"- **File:** {rec.get('file', 'N/A')}")
if rec.get('line'):
md.append(f"- **Line:** {rec.get('line')}")
md.append(f"- **Description:** {rec.get('description', 'N/A')}")
md.append(f"- **Recommendation:** {rec.get('recommendation', 'N/A')}")
md.append("")
else:
md.append("No medium priority recommendations.")
md.append("")
# Low priority recommendations
md.append("### Low Priority")
low_priority = report_content['recommendations']['low_priority']
if low_priority:
for i, rec in enumerate(low_priority, 1):
md.append(f"**{i}. {rec.get('issue', 'Recommendation')}**")
md.append(f"- **Type:** {rec.get('type', 'N/A')}")
md.append(f"- **File:** {rec.get('file', 'N/A')}")
if rec.get('line'):
md.append(f"- **Line:** {rec.get('line')}")
md.append(f"- **Description:** {rec.get('description', 'N/A')}")
md.append(f"- **Recommendation:** {rec.get('recommendation', 'N/A')}")
md.append("")
else:
md.append("No low priority recommendations.")
return "\n".join(md)