Spaces:
Running
Running
from typing import List | |
import gradio as gr | |
import PIL | |
from gradio import ChatMessage | |
from smolagents.gradio_ui import stream_to_gradio | |
from agents.all_agents import get_master_agent | |
from llm import get_default_model | |
gr.set_static_paths(paths=["images/"]) | |
master_agent = get_master_agent(get_default_model()) | |
print(master_agent) | |
def resize_image(image): | |
width, height = image.size | |
if width > 1200 or height > 800: | |
ratio = min(1200 / width, 800 / height) | |
new_width = int(width * ratio) | |
new_height = int(height * ratio) | |
resized_image = image.resize((new_width, new_height), PIL.Image.Resampling.LANCZOS) | |
return resized_image | |
return image | |
def chat_interface_fn(input_request, history: List[ChatMessage], gallery): | |
if gallery is None: | |
gallery = [] | |
else: | |
gallery = [value[0] for value in gallery] | |
message = input_request["text"] | |
image_paths = input_request["files"] | |
prompt = f""" | |
You are given the following message from the user: | |
{message} | |
""" | |
if len(image_paths) > 0: | |
prompt += """ | |
The user also provided the additional images that you can find in "images" variable | |
""" | |
if len(history) > 0: | |
prompt += "This request follows a previous request, you can use the previous request to help you answer the current request." | |
prompt += """ | |
Before your final answer, if you have any images to show, store them in the "final_images" variable. | |
Always return a text of what you did. | |
""" | |
images = [PIL.Image.open(image_path) for image_path in image_paths] | |
if len(gallery) > 0: | |
images.extend(gallery) | |
resized_images = [resize_image(image) for image in images] | |
for message in stream_to_gradio( | |
master_agent, | |
task=prompt, | |
task_images=resized_images, | |
additional_args={"images": images}, | |
reset_agent_memory=False, | |
): | |
history.append(message) | |
yield history, None | |
final_images = master_agent.python_executor.state.get("final_images", []) | |
gallery.extend(final_images) | |
yield history, gallery | |
def example_selected(example): | |
textbox.value = example[0] | |
image_box.value = example[1] | |
example = { | |
"text": example[0], | |
"files": [ | |
{ | |
"url": example[1], | |
"path": example[1], | |
"name": example[1], | |
} | |
], | |
} | |
return example | |
with gr.Blocks() as demo: | |
gr.Markdown( | |
""" | |
# ScouterAI | |
{ width="800" height="600" style="display: block; margin: 0 auto" } | |
Welcome to ScouterAI, the Agent that is capable of detecting over 9000 entities in images using the best models of the HuggingFace Hub. | |
""") | |
output_gallery = gr.Gallery(label="Output Gallery", type="pil", format="png") | |
textbox = gr.MultimodalTextbox() | |
gr.ChatInterface( | |
chat_interface_fn, | |
type="messages", | |
multimodal=True, | |
textbox=textbox, | |
additional_inputs=[output_gallery], | |
additional_outputs=[output_gallery], | |
) | |
text_box = gr.Textbox(label="Text", visible=False) | |
image_box = gr.Image(label="Image", visible=False) | |
dataset = gr.Dataset( | |
samples=[ | |
[ | |
"I would like to detect all the cars in the image", | |
"https://upload.wikimedia.org/wikipedia/commons/5/51/Crossing_the_Hudson_River_on_the_George_Washington_Bridge_from_Fort_Lee%2C_New_Jersey_to_Manhattan%2C_New_York_%287237796950%29.jpg", | |
], | |
[ | |
"Find vegetables in the image and annotate the image with their masks", | |
"https://media.istockphoto.com/id/1203599923/fr/photo/fond-de-nourriture-avec-lassortiment-des-l%C3%A9gumes-organiques-frais.jpg?s=612x612&w=0&k=20&c=Yu8nfOYI9YZ0UTpb7iFqX8OHp9wfvd9keMQ0BZIzhWs=", | |
], | |
], | |
components=[text_box, image_box], | |
label="Examples", | |
) | |
dataset.select(example_selected, [dataset], [textbox]) | |
demo.launch() | |