Spaces:
Running
Running
from typing import List | |
import gradio as gr | |
import PIL | |
from gradio import ChatMessage | |
from smolagents.gradio_ui import stream_to_gradio | |
from agents.all_agents import get_master_agent | |
from llm import ANTHROPIC_MODEL_IDS, get_anthropic_model | |
gr.set_static_paths(paths=["images/"]) | |
def resize_image(image): | |
width, height = image.size | |
if width > 1200 or height > 800: | |
ratio = min(1200 / width, 800 / height) | |
new_width = int(width * ratio) | |
new_height = int(height * ratio) | |
resized_image = image.resize((new_width, new_height), PIL.Image.Resampling.LANCZOS) | |
return resized_image | |
return image | |
def chat_interface_fn(input_request, history: List[ChatMessage], gallery, anthropic_api_key, anthropic_model_id): | |
model = get_anthropic_model(anthropic_model_id, anthropic_api_key) | |
agent = get_master_agent(model) | |
if gallery is None: | |
gallery = [] | |
else: | |
gallery = [value[0] for value in gallery] | |
message = input_request["text"] | |
image_paths = input_request["files"] | |
prompt = f""" | |
You are given the following message from the user: | |
{message} | |
""" | |
if len(image_paths) > 0: | |
prompt += """ | |
The user also provided the additional images that you can find in "images" variable | |
""" | |
if len(history) > 0: | |
prompt += "This request follows a previous request, you can use the previous request to help you answer the current request." | |
prompt += """ | |
Before your final answer, if you have any images to show, store them in the "final_images" variable. | |
Always return a text of what you did. | |
Never assume an invented model name, always use the model name provided by the task_model_retriever tool. | |
""" | |
images = [PIL.Image.open(image_path) for image_path in image_paths] | |
if len(gallery) > 0: | |
images.extend(gallery) | |
resized_images = [resize_image(image) for image in images] | |
for message in stream_to_gradio( | |
agent, | |
task=prompt, | |
task_images=resized_images, | |
additional_args={"images": images}, | |
reset_agent_memory=False, | |
): | |
history.append(message) | |
yield history, None | |
final_images = agent.python_executor.state.get("final_images", []) | |
gallery.extend(final_images) | |
yield history, gallery | |
def example_selected(example): | |
textbox.value = example[0] | |
image_box.value = example[1] | |
example = { | |
"text": example[0], | |
"files": [ | |
{ | |
"url": example[1], | |
"path": example[1], | |
"name": example[1], | |
} | |
], | |
} | |
return example | |
with gr.Blocks() as demo: | |
gr.Markdown( | |
""" | |
# ScouterAI | |
""" | |
) | |
gr.HTML( | |
""" | |
<div style="display: flex; align-items: center; gap: 20px; margin: 20px 0;"> | |
<img src="https://cdn-uploads.huggingface.co/production/uploads/632885ba1558dac67c440aa8/KpMuW4Qvrh5N-FMcVKKqG.png" | |
alt="Picture" | |
style="max-height: 350px; flex-shrink: 0;" /> | |
<div style="flex-grow: 1;"> | |
<p style="margin: 0; font-size: 1.1em;"> | |
<p style="font-size: 1.8em; margin-bottom: 10px; font-weight: bold">Welcome to ScouterAI</p> | |
<p style="font-size: 1.2em;">The agent capable of identifying the best | |
model among the entire HuggingFace Hub to use for your needs.</p> | |
This Space focuses on using agentic reasoning to plan the use of multiple models to perform vision tasks. | |
<br> | |
To answer your request, the agent will use the following models from the hub: | |
<br> | |
<ul> | |
<li><a href="https://huggingface.co/models?pipeline_tag=object-detection&library=transformers&sort=trending">Object detection</a></li> | |
<li><a href="https://huggingface.co/models?pipeline_tag=image-segmentation&library=transformers&sort=trending">Image segmentation</a></li> | |
<li><a href="https://huggingface.co/models?pipeline_tag=image-classification&library=transformers&sort=trending">Image classification</a></li> | |
</ul> | |
The agent can resize and crop images as well as annotating it with bounding boxes, masks and labels. | |
<br> | |
<br> | |
Type your request and add images to the textbox below or click on one of the examples to see how <strong style="font-size: 1.5em;">powerful</strong> it is. | |
</p> | |
</div> | |
</div> | |
""", | |
) | |
gr.Markdown( | |
""" | |
## Update 17/06/2025 | |
This Space was originally a Hackathon submission, funded with Anthropic Free Credits.<br> | |
Due to the high popularity of the Space, unfortunately I can't fund personally the credits anymore.<br> | |
I have added below the ability to add your own Anthropic API Key and select the model to use.<br> | |
""" | |
) | |
anthropic_api_key = gr.Textbox(label="Anthropic API Key") | |
anthropic_model_id = gr.Dropdown(label="Anthropic Model", choices=ANTHROPIC_MODEL_IDS) | |
gr.Markdown( | |
""" | |
## Future plans | |
I plan to continue developing this Space on a more personal space here : https://huggingface.co/spaces/stevenbucaille/ScouterAI <br> | |
This Space will be powered with ZeroGPU and have more LLM options.<br> | |
Don't hesitate to like this other Space or reach out to me on <a href="https://www.linkedin.com/in/sbucaille/">LinkedIn</a> if you have any questions or feedback!<br> | |
Stay tuned! | |
<br> | |
""" | |
) | |
output_gallery = gr.Gallery(label="Images generated by the agent (do not put images)", type="pil", format="png") | |
textbox = gr.MultimodalTextbox() | |
gr.ChatInterface( | |
chat_interface_fn, | |
type="messages", | |
multimodal=True, | |
textbox=textbox, | |
additional_inputs=[output_gallery, anthropic_api_key, anthropic_model_id], | |
additional_outputs=[output_gallery], | |
) | |
text_box = gr.Textbox(label="Text", visible=False) | |
image_box = gr.Image(label="Image", visible=False) | |
dataset = gr.Dataset( | |
samples=[ | |
[ | |
"I would like to detect all the cars in the image", | |
"https://upload.wikimedia.org/wikipedia/commons/5/51/Crossing_the_Hudson_River_on_the_George_Washington_Bridge_from_Fort_Lee%2C_New_Jersey_to_Manhattan%2C_New_York_%287237796950%29.jpg", | |
], | |
[ | |
"Find vegetables in the image and annotate the image with their masks", | |
"https://media.istockphoto.com/id/1203599923/fr/photo/fond-de-nourriture-avec-lassortiment-des-l%C3%A9gumes-organiques-frais.jpg?s=612x612&w=0&k=20&c=Yu8nfOYI9YZ0UTpb7iFqX8OHp9wfvd9keMQ0BZIzhWs=", | |
], | |
[ | |
"Detect each dog in the image and identify its breed, then provide a crop of each dog and annotate the original image with a bounding box and a label", | |
"https://images.pexels.com/photos/10094979/pexels-photo-10094979.jpeg", | |
], | |
], | |
components=[text_box, image_box], | |
label="Examples", | |
) | |
dataset.select(example_selected, [dataset], [textbox]) | |
demo.launch() | |