File size: 45,383 Bytes
e6572e5 0775bfb e6572e5 f1b54fb e6572e5 0775bfb e6572e5 7860c23 e6572e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 |
from collections import Counter
import chess
import gradio as gr
import pandas as pd
from gradio_chessboard import Chessboard
def get_position(fen: str) -> dict:
"""
Describe the current chess position from a FEN string, plus a material summary.
Attempts to classify the opening, and if successful, adds the opening information to the position.
Otherwise, it adds a piece map with the current pieces and the list of legal moves.
Args:
fen (str): The FEN string representing the chess position.
"""
board = chess.Board(fen)
position = {
"turn": _get_color_name(board.turn),
"castling": {
"white": {
"kingside": board.has_kingside_castling_rights(chess.WHITE),
"queenside": board.has_queenside_castling_rights(chess.WHITE),
},
"black": {
"kingside": board.has_kingside_castling_rights(chess.BLACK),
"queenside": board.has_queenside_castling_rights(chess.BLACK),
},
},
"en_passant": chess.square_name(board.ep_square) if board.ep_square else None,
"mate": board.is_checkmate(),
"stalemate": board.is_stalemate(),
}
opening = classify_opening(board.fen())
if "error" not in opening:
# If the opening classification was successful, add it to the position
position["opening"] = opening
elif board.fen() == board.starting_fen:
# If the position is the starting position, add a default opening
position["opening"] = {"name": "Starting Position"}
else:
# If there was an error, just add a piece map (potentionally with fewer pieces)
position["pieces"] = (
[
f"{chess.square_name(s)}: {_get_color_name(p.color)} {chess.piece_name(p.piece_type)}"
for s, p in board.piece_map().items()
],
)
position["legal_moves"] = ([move.uci() for move in board.legal_moves],)
white_counts = Counter(
piece.piece_type
for square, piece in board.piece_map().items()
if piece.color == chess.WHITE
)
black_counts = Counter(
piece.piece_type
for square, piece in board.piece_map().items()
if piece.color == chess.BLACK
)
def format_counts(counter):
order = [chess.QUEEN, chess.ROOK, chess.BISHOP, chess.KNIGHT, chess.PAWN]
symbol_map = {
chess.QUEEN: "Q",
chess.ROOK: "R",
chess.BISHOP: "B",
chess.KNIGHT: "N",
chess.PAWN: "P",
}
parts = []
for p_type in order:
cnt = counter.get(p_type, 0)
parts.append(f"{symbol_map[p_type]}={cnt}")
return ", ".join(parts)
material_count = {
"white": format_counts(white_counts),
"black": format_counts(black_counts),
}
diff = {
p_type: white_counts.get(p_type, 0) - black_counts.get(p_type, 0)
for p_type in (chess.QUEEN, chess.ROOK, chess.BISHOP, chess.KNIGHT, chess.PAWN)
}
white_adv = [(ptype, diff[ptype]) for ptype in diff if diff[ptype] > 0]
black_adv = [(ptype, -diff[ptype]) for ptype in diff if diff[ptype] < 0]
def summarize_advantages(side_name, adv_list):
"""
adv_list: list of tuples (piece_type, count), count > 0
Returns phrases like "1 rook and 2 pawns"
"""
if not adv_list:
return ""
piece_names = {
chess.QUEEN: "queen",
chess.ROOK: "rook",
chess.BISHOP: "bishop",
chess.KNIGHT: "knight",
chess.PAWN: "pawn",
}
parts = []
for ptype, cnt in adv_list:
name = piece_names[ptype]
# pluralize
if cnt > 1:
name += "s"
parts.append(f"{cnt} {name}")
# join with " and "
joined = " and ".join(parts)
return f"{side_name} is up {joined}"
white_summary = summarize_advantages("White", white_adv)
black_summary = summarize_advantages("Black", black_adv)
if white_summary and black_summary:
# If both sides have something (e.g. piece‐for‐pawn imbalances), combine
imbalance = f"Mixed: {white_summary}; {black_summary}"
elif white_summary:
imbalance = white_summary
elif black_summary:
imbalance = black_summary
else:
imbalance = "Material is equal"
position["material_count"] = material_count
position["imbalance"] = imbalance
return position
def get_square_info(fen: str, square_name: str) -> dict:
"""Get information about a specific square in the chess position.
This function retrieves the piece on the specified square, as well as the attackers and defenders of that square.
Args:
fen (str): The FEN string representing the chess position.
square_name (str): The name of the square (e.g., 'e4').
"""
board = chess.Board(fen)
square = chess.parse_square(square_name)
return {
"square": square_name,
"piece": _get_piece_info_on_square(board, square),
"attackers/defenders": [
_get_attackers(board, square, color) for color in (chess.WHITE, chess.BLACK)
],
}
def get_top_moves(fen: str, top_n: int = 5) -> dict:
"""Get the top N moves for a given chess position using StockFish.
Returns a list of the top moves with their absolute scores (in centipawns) and whether they are leading to a mate.
DISCLAIMER: This function uses the Stockfish chess engine, ONLY use it if explicitly allowed.
Args:
fen (str): The FEN string representing the chess position.
top_n (int): The number of top moves to return.
"""
import chess.engine
board = chess.Board(fen)
with chess.engine.SimpleEngine.popen_uci("/usr/games/stockfish") as engine:
info = engine.analyse(board, chess.engine.Limit(time=2.0), multipv=top_n)
top_moves = [
{
"move": move["pv"][0].uci(),
"score": move["score"].white().score(),
"mate": move["score"].is_mate(),
}
for move in info
]
return {"top_moves": top_moves}
def analyze_pawn_structure(fen):
"""
Analyze pawn‐structure features for both White and Black from a given FEN string.
Args:
fen (str): The FEN string representing the chess position.
"""
board = chess.Board(fen)
white_pawns = list(board.pieces(chess.PAWN, chess.WHITE))
black_pawns = list(board.pieces(chess.PAWN, chess.BLACK))
def pawn_islands_and_doubles(pawn_squares):
"""
Given a list of pawn squares (for one color), compute:
- num_islands: how many contiguous runs of files have at least one pawn
- doubled_files: [file_letters ...] where there are 2+ pawns on that file
- files_with_pawns: set of file indices that have ≥1 pawn
- file_to_count: dict mapping file→count_of_pawns
"""
file_counts = {}
for sq in pawn_squares:
f = chess.square_file(sq)
file_counts[f] = file_counts.get(f, 0) + 1
files_with_pawns = set(file_counts.keys())
# Count how many contiguous runs of True in an 8‐long boolean array
num_islands = 0
in_run = False
for f in range(8):
if f in files_with_pawns:
if not in_run:
num_islands += 1
in_run = True
else:
in_run = False
doubled_files = [
chess.FILE_NAMES[f] for f, cnt in file_counts.items() if cnt > 1
]
return num_islands, doubled_files, files_with_pawns, file_counts
# White: islands, doubled, and helper sets
w_islands, w_doubled, w_files, w_file_count = pawn_islands_and_doubles(white_pawns)
# Black: same
b_islands, b_doubled, b_files, b_file_count = pawn_islands_and_doubles(black_pawns)
# 2) Isolated pawns: a pawn whose file f has no friendly pawn on f-1 or f+1
def find_isolated(pawn_sqs, files_with, color):
"""
Returns [square_name ...] where each pawn is isolated:
- its file f has no friendly pawn on f-1 or f+1.
"""
isolated = []
for sq in pawn_sqs:
f = chess.square_file(sq)
# check adjacent files
if (f - 1) not in files_with and (f + 1) not in files_with:
isolated.append(chess.square_name(sq))
return isolated
w_isolated = find_isolated(white_pawns, w_files, chess.WHITE)
b_isolated = find_isolated(black_pawns, b_files, chess.BLACK)
# 3) Passed pawns: a pawn with no enemy pawn ahead of it on same or adjacent file
def find_passed(pawn_sqs, enemy_sqs, is_white):
"""
For each pawn of 'is_white' color:
- Let (f,r) be its file and rank index (0..7), where r=0 means rank 1, r=7 means rank 8.
- If is_white: check enemy pawns on files f-1,f,f+1 with rank_index > r. If none, it's passed.
- If black: check enemy pawns on files f-1,f,f+1 with rank_index < r. If none, it's passed.
"""
passed = []
# Pre‐compute enemy file/rank for quick checks
enemy_positions = [
(chess.square_file(e), chess.square_rank(e)) for e in enemy_sqs
]
for sq in pawn_sqs:
f = chess.square_file(sq)
r = chess.square_rank(sq)
is_passed = True
for ef, er in enemy_positions:
if abs(ef - f) <= 1:
if is_white:
if er > r:
# an enemy pawn is “in front” on same/adjacent file
is_passed = False
break
else:
if er < r:
is_passed = False
break
if is_passed:
passed.append(chess.square_name(sq))
return passed
w_passed = find_passed(white_pawns, black_pawns, True)
b_passed = find_passed(black_pawns, white_pawns, False)
# 4) Backward pawns: heuristic:
# - No friendly pawn on adjacent file with rank ≤ r
# - The square in front is either occupied or attacked by an enemy pawn
def find_backward(pawn_sqs, friend_sqs, enemy_sqs, is_white):
"""
For each pawn sq of this color:
- Let f,r be its file/rank
- Condition A: No friendly pawn on file f-1 or f+1 with rank ≤ r (for white) or ≥ r (for black)
- Condition B: The square in front (r+1 for white; r-1 for black) is either occupied or attacked by an enemy pawn
- If both hold → mark as backward.
"""
backward = []
friend_pos = [
(chess.square_file(fsq), chess.square_rank(fsq)) for fsq in friend_sqs
]
enemy_pawn_positions = set(enemy_sqs) # for quick “occupied‐by‐pawn” checks
for sq in pawn_sqs:
f = chess.square_file(sq)
r = chess.square_rank(sq)
# 4A) no friendly adjacent “supporter”
has_support = False
for ff, rr in friend_pos:
if abs(ff - f) == 1:
if is_white:
if rr <= r:
has_support = True
break
else:
if rr >= r:
has_support = True
break
if has_support:
continue # NOT backward if there is a supporting pawn
# 4B) check the square in front
if is_white:
if r == 7:
continue # already on rank 8 → can’t be “backward” in the usual sense
front_sq = chess.square(f, r + 1)
else:
if r == 0:
continue
front_sq = chess.square(f, r - 1)
# If front‐square is occupied by any piece OR attacked by an enemy pawn → block
if board.piece_at(front_sq) is not None:
blocked = True
else:
# attacked by an enemy pawn?
attackers = board.attackers(
chess.BLACK if is_white else chess.WHITE, front_sq
)
# see if any of those attackers is an enemy pawn:
attacked_by_pawn = False
for attacker_sq in attackers:
p = board.piece_at(attacker_sq)
if (
p is not None
and p.piece_type == chess.PAWN
and p.color != board.piece_at(sq).color
):
attacked_by_pawn = True
break
blocked = attacked_by_pawn
if blocked:
backward.append(chess.square_name(sq))
return backward
w_backward = find_backward(white_pawns, white_pawns, black_pawns, True)
b_backward = find_backward(black_pawns, black_pawns, white_pawns, False)
# 5) Potential break squares:
# For each pawn of a side, if front‐square is empty and there is an enemy pawn diagonally ahead,
# then that front‐square is a “break point” where advancing would challenge the enemy pawn.
def find_break_sqs(pawn_sqs, is_white):
"""
For each pawn sq:
- Compute front = (f, r+1) if white; (f, r-1) if black
- If front is on board, empty, and has an enemy pawn on one of its diagonals, add front.
"""
breaks = set()
for sq in pawn_sqs:
f = chess.square_file(sq)
r = chess.square_rank(sq)
if is_white and r == 7:
continue
if not is_white and r == 0:
continue
if is_white:
front = chess.square(f, r + 1)
# diagonals at (f-1, r+1) and (f+1, r+1)
diag1 = chess.square(f - 1, r + 1) if f > 0 else None
diag2 = chess.square(f + 1, r + 1) if f < 7 else None
enemy_color = chess.BLACK
else:
front = chess.square(f, r - 1)
diag1 = chess.square(f - 1, r - 1) if f > 0 else None
diag2 = chess.square(f + 1, r - 1) if f < 7 else None
enemy_color = chess.WHITE
# Must be empty to “break” into
if board.piece_at(front) is not None:
continue
# If any diagonal contains an enemy pawn, mark front as break square
for diag in (diag1, diag2):
if diag is not None:
piece = board.piece_at(diag)
if (
piece is not None
and piece.piece_type == chess.PAWN
and piece.color == enemy_color
):
breaks.add(front)
break
return [chess.square_name(sq) for sq in sorted(breaks)]
w_breaks = find_break_sqs(white_pawns, True)
b_breaks = find_break_sqs(black_pawns, False)
# Assemble final result
return {
"pawn_islands": {"white": w_islands, "black": b_islands},
"doubled_pawns": {"white": w_doubled, "black": b_doubled},
"isolated_pawns": {"white": w_isolated, "black": b_isolated},
"passed_pawns": {"white": w_passed, "black": b_passed},
"backward_pawns": {"white": w_backward, "black": b_backward},
"break_squares": {"white": w_breaks, "black": b_breaks},
}
def analyze_tactical_patterns(fen):
"""
Analyze immediate tactical patterns from a given FEN string.
This function detects:
- Potential knight forks and double attacks (refering to next move)
- Pins, skewers, discovered attacks and x‐ray attacks in the current position.
Args:
fen (str): The FEN string representing the chess position.
"""
board = chess.Board(fen)
piece_name = {
chess.PAWN: "pawn",
chess.KNIGHT: "knight",
chess.BISHOP: "bishop",
chess.ROOK: "rook",
chess.QUEEN: "queen",
chess.KING: "king",
}
def find_forks_and_double_attacks(color):
"""
For each legal move by 'color', detect:
- Knight forks: moved knight attacks ≥2 enemy pieces
- Double attacks: moved non-knight piece attacks ≥2 enemy pieces
Returns two lists of descriptive strings.
"""
forks = []
double_attacks = []
b = board.copy()
b.turn = color
for move in b.legal_moves:
moving_piece = b.piece_at(move.from_square)
if moving_piece is None:
continue
b.push(move)
to_sq = move.to_square
attacked_squares = b.attacks(to_sq)
attacked_pieces = []
for sq in attacked_squares:
piece = b.piece_at(sq)
if piece is not None and piece.color != color:
attacked_pieces.append((sq, piece))
if len(attacked_pieces) >= 2:
mover_symbol = moving_piece.symbol().upper()
dest = chess.square_name(to_sq)
targets = [
f"{piece_name[p.piece_type]} on {chess.square_name(sq)}"
for sq, p in attacked_pieces
]
target_str = " and ".join(targets)
if moving_piece.piece_type == chess.KNIGHT:
forks.append(f"{mover_symbol}{dest} forks {target_str}")
else:
double_attacks.append(
f"{mover_symbol}{dest} double‐attacks {target_str}"
)
b.pop()
return forks, double_attacks
def find_pins(color):
"""
Find pinned pieces of 'color'. For each pinned piece, identify the pinning piece.
Returns list of descriptive strings.
"""
pins = []
king_sq = board.king(color)
if king_sq is None:
return pins
for sq in (
board.pieces(chess.PAWN, color)
| board.pieces(chess.KNIGHT, color)
| board.pieces(chess.BISHOP, color)
| board.pieces(chess.ROOK, color)
| board.pieces(chess.QUEEN, color)
):
if sq == king_sq:
continue
if board.is_pinned(color, sq):
# Compute direction from king to this pinned piece
f_k, r_k = chess.square_file(king_sq), chess.square_rank(king_sq)
f_p, r_p = chess.square_file(sq), chess.square_rank(sq)
df = f_p - f_k
dr = r_p - r_k
# Normalize direction to unit step
df_norm = (df // abs(df)) if df != 0 else 0
dr_norm = (dr // abs(dr)) if dr != 0 else 0
# Move from pinned piece outward to find pinning slider
cur_f, cur_r = f_p + df_norm, r_p + dr_norm
while 0 <= cur_f < 8 and 0 <= cur_r < 8:
cur_sq = chess.square(cur_f, cur_r)
piece = board.piece_at(cur_sq)
if piece is not None and piece.color != color:
# Check if this piece type can pin along this direction
if dr_norm == 0 and piece.piece_type in (
chess.ROOK,
chess.QUEEN,
):
pinning = piece
elif df_norm == 0 and piece.piece_type in (
chess.ROOK,
chess.QUEEN,
):
pinning = piece
elif abs(df_norm) == abs(dr_norm) and piece.piece_type in (
chess.BISHOP,
chess.QUEEN,
):
pinning = piece
else:
pinning = None
if pinning is not None:
pin_sym = pinning.symbol().upper()
pin_sq = chess.square_name(cur_sq)
pinned_sym = board.piece_at(sq).piece_type
pinned_name = piece_name[board.piece_at(sq).piece_type]
pinned_sq_name = chess.square_name(sq)
king_sq_name = chess.square_name(king_sq)
pins.append(
f"{pin_sym}{pin_sq} pins {pinned_name} on {pinned_sq_name} to king on {king_sq_name}"
)
break
if piece is not None:
# Non-sliding or same-color piece blocks further search
break
cur_f += df_norm
cur_r += dr_norm
return pins
def find_skewers(color):
"""
Find static skewers: slider attacks a high-value enemy piece, behind it on same ray is a lower-value enemy piece.
Returns list of descriptive strings.
"""
skewers = []
enemy_color = not color
for s_sq in (
board.pieces(chess.BISHOP, color)
| board.pieces(chess.ROOK, color)
| board.pieces(chess.QUEEN, color)
):
s_f, s_r = chess.square_file(s_sq), chess.square_rank(s_sq)
# Directions for this slider
directions = []
if board.piece_at(s_sq).piece_type == chess.BISHOP:
directions = [(-1, -1), (-1, 1), (1, -1), (1, 1)]
elif board.piece_at(s_sq).piece_type == chess.ROOK:
directions = [(-1, 0), (1, 0), (0, -1), (0, 1)]
else: # Queen
directions = [
(-1, -1),
(-1, 1),
(1, -1),
(1, 1),
(-1, 0),
(1, 0),
(0, -1),
(0, 1),
]
for df, dr in directions:
cur_f, cur_r = s_f + df, s_r + dr
# Look for first enemy piece
first_found = False
first_sq = None
first_piece = None
while 0 <= cur_f < 8 and 0 <= cur_r < 8:
sq = chess.square(cur_f, cur_r)
piece = board.piece_at(sq)
if piece is not None:
if not first_found and piece.color == enemy_color:
first_found = True
first_sq = sq
first_piece = piece
else:
if first_found and piece.color == enemy_color:
# We have A (first_sq, first_piece) and B (sq, piece)
# Check that first_piece has higher value than piece
values = {
chess.KING: 1000,
chess.QUEEN: 9,
chess.ROOK: 5,
chess.BISHOP: 3,
chess.KNIGHT: 3,
chess.PAWN: 1,
}
if (
values[first_piece.piece_type]
> values[piece.piece_type]
):
s_sym = board.piece_at(s_sq).symbol().upper()
s_sq_name = chess.square_name(s_sq)
high_name = piece_name[first_piece.piece_type]
high_sq = chess.square_name(first_sq)
low_name = piece_name[piece.piece_type]
low_sq = chess.square_name(sq)
skewers.append(
f"{s_sym}{s_sq_name} skewers {high_name} on {high_sq} to {low_name} on {low_sq}"
)
break
else:
# Something that breaks the ray (friendly piece or no second enemy)
break
cur_f += df
cur_r += dr
return skewers
def find_discovered_attacks(color):
"""
Static discovered‐attack patterns: a friendly slider is currently blocked by one friendly piece from attacking an enemy target.
Returns list of descriptive strings.
"""
discovered = []
enemy_color = not color
for s_sq in (
board.pieces(chess.BISHOP, color)
| board.pieces(chess.ROOK, color)
| board.pieces(chess.QUEEN, color)
):
s_f, s_r = chess.square_file(s_sq), chess.square_rank(s_sq)
# Determine directions like in skewers
if board.piece_at(s_sq).piece_type == chess.BISHOP:
directions = [(-1, -1), (-1, 1), (1, -1), (1, 1)]
elif board.piece_at(s_sq).piece_type == chess.ROOK:
directions = [(-1, 0), (1, 0), (0, -1), (0, 1)]
else: # Queen
directions = [
(-1, -1),
(-1, 1),
(1, -1),
(1, 1),
(-1, 0),
(1, 0),
(0, -1),
(0, 1),
]
for df, dr in directions:
cur_f, cur_r = s_f + df, s_r + dr
blocker_sq = None
blocker_piece = None
while 0 <= cur_f < 8 and 0 <= cur_r < 8:
sq = chess.square(cur_f, cur_r)
piece = board.piece_at(sq)
if piece is not None:
if piece.color == color and blocker_sq is None:
# first friendly piece blocks the ray
blocker_sq = sq
blocker_piece = piece
else:
# either second piece or enemy piece
if blocker_sq is not None and piece.color == enemy_color:
# Discovered attack: blocker_sq moving would allow slider at s_sq to attack this piece at sq
s_sym = board.piece_at(s_sq).symbol().upper()
blocker_name = piece_name[blocker_piece.piece_type]
blocker_loc = chess.square_name(blocker_sq)
target_name = piece_name[piece.piece_type]
target_loc = chess.square_name(sq)
discovered.append(
f"Moving {blocker_name} from {blocker_loc} uncovers {s_sym}{chess.square_name(s_sq)} attacking {target_name} on {target_loc}"
)
break
cur_f += df
cur_r += dr
return discovered
def find_xray_attacks(color):
"""
Static x‐ray attacks: slider attacks through one piece (friendly or enemy) to an enemy target behind it.
Returns list of descriptive strings.
"""
xray = []
enemy_color = not color
for s_sq in (
board.pieces(chess.BISHOP, color)
| board.pieces(chess.ROOK, color)
| board.pieces(chess.QUEEN, color)
):
s_f, s_r = chess.square_file(s_sq), chess.square_rank(s_sq)
if board.piece_at(s_sq).piece_type == chess.BISHOP:
directions = [(-1, -1), (-1, 1), (1, -1), (1, 1)]
elif board.piece_at(s_sq).piece_type == chess.ROOK:
directions = [(-1, 0), (1, 0), (0, -1), (0, 1)]
else:
directions = [
(-1, -1),
(-1, 1),
(1, -1),
(1, 1),
(-1, 0),
(1, 0),
(0, -1),
(0, 1),
]
for df, dr in directions:
cur_f, cur_r = s_f + df, s_r + dr
first_blocker = None
first_blocker_sq = None
while 0 <= cur_f < 8 and 0 <= cur_r < 8:
sq = chess.square(cur_f, cur_r)
piece = board.piece_at(sq)
if piece is not None:
if first_blocker is None:
first_blocker = piece
first_blocker_sq = sq
else:
if piece.color == enemy_color:
# X-ray: slider at s_sq x‐rays this piece at sq through first_blocker at first_blocker_sq
s_sym = board.piece_at(s_sq).symbol().upper()
target_name = piece_name[piece.piece_type]
target_loc = chess.square_name(sq)
blocker_name = piece_name[first_blocker.piece_type]
blocker_loc = chess.square_name(first_blocker_sq)
xray.append(
f"{s_sym}{chess.square_name(s_sq)} x‐rays {target_name} on {target_loc} through {blocker_name} on {blocker_loc}"
)
break
cur_f += df
cur_r += dr
return xray
# Build result structure
result = {
"forks": {"white": [], "black": []},
"double_attacks": {"white": [], "black": []},
"pins": {"white": [], "black": []},
"skewers": {"white": [], "black": []},
"discovered_attacks": {"white": [], "black": []},
"xray_attacks": {"white": [], "black": []},
}
# White patterns
w_forks, w_double = find_forks_and_double_attacks(chess.WHITE)
result["forks"]["white"] = w_forks
result["double_attacks"]["white"] = w_double
result["pins"]["white"] = find_pins(chess.WHITE)
result["skewers"]["white"] = find_skewers(chess.WHITE)
result["discovered_attacks"]["white"] = find_discovered_attacks(chess.WHITE)
result["xray_attacks"]["white"] = find_xray_attacks(chess.WHITE)
# Black patterns
b_forks, b_double = find_forks_and_double_attacks(chess.BLACK)
result["forks"]["black"] = b_forks
result["double_attacks"]["black"] = b_double
result["pins"]["black"] = find_pins(chess.BLACK)
result["skewers"]["black"] = find_skewers(chess.BLACK)
result["discovered_attacks"]["black"] = find_discovered_attacks(chess.BLACK)
result["xray_attacks"]["black"] = find_xray_attacks(chess.BLACK)
return result
def evaluate_king_safety(fen):
"""
Evaluate king safety for both White and Black from a given FEN string.
Args:
fen (str): The FEN string representing the chess position.
"""
board = chess.Board(fen)
def get_shield_and_files(color):
"""
For 'color', find:
- pawn_shield: count of own pawns directly in front of king on files f-1,f,f+1.
- max_shield: maximum possible shield pawns (1-3 depending on king file at edge).
- open_or_semi_open_files: list of file names (adjacent to king) that are open or semi-open.
"""
king_sq = board.king(color)
if king_sq is None:
return 0, 0, []
kf = chess.square_file(king_sq)
kr = chess.square_rank(king_sq)
# Direction “forward” for shield pawns
ranks_dir = 1 if color == chess.WHITE else -1
shield_rank = kr + ranks_dir
files_to_check = [f for f in (kf - 1, kf, kf + 1) if 0 <= f < 8]
max_shield = len(files_to_check)
# Count intact shield pawns: own pawn at (file, shield_rank)
shield_count = 0
for f in files_to_check:
sq = chess.square(f, shield_rank) if 0 <= shield_rank < 8 else None
if sq is not None:
piece = board.piece_at(sq)
if (
piece is not None
and piece.piece_type == chess.PAWN
and piece.color == color
):
shield_count += 1
# Determine open or semi‐open files among files_to_check
open_or_semi_open = []
for f in files_to_check:
# Gather all pawns on that file
pawns_on_file = [
board.piece_at(chess.square(f, r))
for r in range(8)
if (p := board.piece_at(chess.square(f, r))) is not None
and p.piece_type == chess.PAWN
]
has_friendly = any(p.color == color for p in pawns_on_file)
has_enemy = any(p.color != color for p in pawns_on_file)
file_name = chess.FILE_NAMES[f]
if not pawns_on_file:
# fully open file
open_or_semi_open.append(file_name)
elif has_enemy and not has_friendly:
# semi‐open (enemy pawn only)
open_or_semi_open.append(file_name)
return shield_count, max_shield, open_or_semi_open
def get_attacker_count(color):
"""
Count unique enemy pieces attacking any of the up to 8 squares adjacent to the king.
"""
king_sq = board.king(color)
if king_sq is None:
return 0
enemy_color = not color
kf = chess.square_file(king_sq)
kr = chess.square_rank(king_sq)
attackers = set()
# Loop over the eight neighbors
for df in (-1, 0, 1):
for dr in (-1, 0, 1):
if df == 0 and dr == 0:
continue
f = kf + df
r = kr + dr
if 0 <= f < 8 and 0 <= r < 8:
sq = chess.square(f, r)
for attacker_sq in board.attackers(enemy_color, sq):
attackers.add(attacker_sq)
return len(attackers)
def compute_shelter_score(shield_count, max_shield, open_count, attacker_count):
"""
Compute a composite shelter score in [0, 1], combining:
- shield_factor: shield_count / max_shield
- file_factor: 1 - (open_count / max_shield)
- attacker_factor: 1 - min(attacker_count, 8) / 8
Return average of the three, rounded to 2 decimals.
"""
if max_shield == 0:
shield_factor = 0
file_factor = 0
else:
shield_factor = shield_count / max_shield
file_factor = 1 - (open_count / max_shield)
attacker_factor = 1 - min(attacker_count, 8) / 8
return round((shield_factor + file_factor + attacker_factor) / 3, 2)
result = {
"pawn_shield": {"white": "", "black": ""},
"open_files": {"white": [], "black": []},
"attacker_count": {"white": 0, "black": 0},
"shelter_score": {"white": 0.0, "black": 0.0},
}
# White evaluation
w_shield, w_max_shield, w_open = get_shield_and_files(chess.WHITE)
w_attackers = get_attacker_count(chess.WHITE)
w_shelter = compute_shelter_score(w_shield, w_max_shield, len(w_open), w_attackers)
result["pawn_shield"]["white"] = f"{w_shield} of {w_max_shield} shield pawns"
result["open_files"]["white"] = w_open
result["attacker_count"]["white"] = w_attackers
result["shelter_score"]["white"] = w_shelter
# Black evaluation
b_shield, b_max_shield, b_open = get_shield_and_files(chess.BLACK)
b_attackers = get_attacker_count(chess.BLACK)
b_shelter = compute_shelter_score(b_shield, b_max_shield, len(b_open), b_attackers)
result["pawn_shield"]["black"] = f"{b_shield} of {b_max_shield} shield pawns"
result["open_files"]["black"] = b_open
result["attacker_count"]["black"] = b_attackers
result["shelter_score"]["black"] = b_shelter
return result
def classify_opening(fen: str) -> dict:
"""
Attempt to classify a chess opening using the Lichess openings database.
Return the ECO code, name, moves and main sub-variations of the opening.
Args:
fen (str): The FEN string representing the chess position.
"""
board = chess.Board(fen)
epd_key = board.epd()
df = _load_lichess_openings()
match = df[df["epd"] == epd_key]
if match.empty:
return {"error": f"No ECO code found for position: {fen}"}
eco_code = match.iloc[0]["eco"]
opening_name = match.iloc[0]["name"]
base_pgn = match.iloc[0]["pgn"]
base_uci = match.iloc[0]["uci"]
base_len = len(base_uci.split())
def next_move(uci_str: str) -> str | None:
parts = uci_str.split()
if not parts[:base_len] == base_uci.split():
return None
return parts[base_len] if len(parts) > base_len else None
df["next_move"] = df["uci"].apply(next_move)
subs = (
df[df["next_move"].notna()]
.sort_values("uci")
.drop_duplicates("next_move", keep="first")
)
subvariants = [
{"name": row["name"], "pgn": row["pgn"], "fen": row["epd"]}
for _, row in subs.iterrows()
]
return {
"eco": eco_code,
"name": opening_name,
"pgn": base_pgn,
"subvariants": subvariants,
}
def find_opening_by_name(name: str) -> dict:
"""
Search for a chess opening by its name in the Lichess openings database.
Return the ECO code, name, PGN, FEN and sub-variations of a chess opening by its name.
The name is matched case-insensitively.
Args:
name (str): The name of the chess opening to search for (e.g. Caro-Kann Defense: Advance Variation).
"""
df = _load_lichess_openings()
mask = df["name"].str.contains(name, case=False, regex=False)
matches = df[mask]
if matches.empty:
return {"error": f"No opening found matching name: '{name}'"}
row = matches.iloc[0]
eco_code = row["eco"]
full_name = row["name"]
base_pgn = row["pgn"]
base_uci = row["uci"]
epd = row["epd"]
fen = f"{epd} 0 1"
base_moves = base_uci.split()
base_len = len(base_moves)
def next_move(uci_str: str) -> str | None:
parts = uci_str.split()
if not parts[:base_len] == base_uci.split():
return None
return parts[base_len] if len(parts) > base_len else None
df["next_move"] = df["uci"].apply(next_move)
subs = (
df[df["next_move"].notna()]
.sort_values("uci")
.drop_duplicates("next_move", keep="first")
)
subvariants = [
{"name": sub_row["name"], "pgn": sub_row["pgn"], "fen": sub_row["epd"]}
for _, sub_row in subs.iterrows()
]
return {
"eco": eco_code,
"name": full_name,
"pgn": base_pgn,
"fen": fen,
"subvariants": subvariants,
}
def _get_color_name(color: chess.Color) -> str:
return "white" if color == chess.WHITE else "black"
def _get_piece_info_on_square(board: chess.Board, square: chess.Square) -> str:
piece = board.piece_at(square)
if piece is None:
return f"No piece on {chess.square_name(square)}"
color = _get_color_name(piece.color)
result = f"There is a {color} {chess.piece_name(piece.piece_type)} on {chess.square_name(square)}."
legal_moves = [
chess.square_name(m.to_square)
for m in board.legal_moves
if m.from_square == square
]
if not legal_moves:
result += f" It can't move because"
if board.turn != piece.color:
result += f" it is not {_get_color_name(piece.color)}'s turn."
elif board.is_pinned(piece.color, square):
result += " it is pinned."
elif board.is_check():
result += f" it is a check and the {chess.piece_name(piece.piece_type)} can't block"
else:
result += " it is blocked."
result += f" However, it attacks the following squares: {', '.join([chess.square_name(s) for s in board.attacks(square)])}."
else:
result += f" It can move to the following squares: {', '.join(legal_moves)}."
return result
def _get_attackers(board: chess.Board, square: chess.Square, color: chess.Color) -> str:
piece = board.piece_at(square)
title = "attackers" if piece is None or piece.color != color else "defenders"
attackers = board.attackers(color, square)
color_name = _get_color_name(color)
if not attackers:
return f"No {color_name} {title} for {chess.square_name(square)}"
return (
f"{len(attackers)} {color_name.title()} {title} for {chess.square_name(square)}: "
+ ", ".join(
[
f"{chess.piece_name(board.piece_at(s).piece_type)} on {chess.square_name(s)}"
for s in attackers
]
)
)
def _load_lichess_openings(
path_prefix: str = "/app/data/lichess_openings/dist/",
) -> pd.DataFrame:
"""Load Lichess openings data from TSV files.
Assumes files 'a.tsv', 'b.tsv', 'c.tsv', 'd.tsv', 'e.tsv' are in path_prefix.
Each has columns: eco, name, pgn, uci, epd.
"""
files = [f"{path_prefix}{vol}.tsv" for vol in ("a", "b", "c", "d", "e")]
dfs = []
for fn in files:
df = pd.read_csv(fn, sep="\t", usecols=["eco", "name", "pgn", "uci", "epd"])
dfs.append(df)
return pd.concat(dfs, ignore_index=True)
get_position_tool = gr.Interface(
fn=get_position,
inputs=Chessboard(label="FEN String"),
outputs=gr.JSON(label="Chess Position"),
title="Chess Position Viewer",
description="Enter a FEN string to view the current chess position.",
)
get_square_info_tool = gr.Interface(
fn=get_square_info,
inputs=[Chessboard(label="FEN String"), gr.Textbox(label="Square Name")],
outputs=gr.JSON(label="Square Info"),
title="Chess Square Info",
description="Enter a FEN string and a square name (e.g., 'e4') to get information about the piece on that square.",
)
get_top_moves_tool = gr.Interface(
fn=get_top_moves,
inputs=[Chessboard(label="FEN String"), gr.Number(value=5, label="Top N Moves")],
outputs=gr.JSON(label="Top Moves"),
title="Top Moves Analyzer",
description="Enter a FEN string to get the top moves for the current position using StockFish.",
)
analyze_pawn_structure_tool = gr.Interface(
fn=analyze_pawn_structure,
inputs=Chessboard(label="FEN String"),
outputs=gr.JSON(label="Pawn Structure Analysis"),
title="Pawn Structure Analyzer",
description="Enter a FEN string to analyze the pawn structure features for both White and Black.",
)
analyze_tactical_patterns_tool = gr.Interface(
fn=analyze_tactical_patterns,
inputs=Chessboard(label="FEN String"),
outputs=gr.JSON(label="Tactical Patterns Analysis"),
title="Tactical Patterns Analyzer",
description="Enter a FEN string to analyze immediate tactical patterns for both White and Black.",
)
evaluate_king_safety_tool = gr.Interface(
fn=evaluate_king_safety,
inputs=Chessboard(label="FEN String"),
outputs=gr.JSON(label="King Safety Evaluation"),
title="King Safety Evaluator",
description="Enter a FEN string to evaluate the safety of both kings in the current position.",
)
classify_opening_tool = gr.Interface(
fn=classify_opening,
inputs=Chessboard(label="FEN String"),
outputs=gr.JSON(label="Opening Classification"),
title="Opening Classifier",
description="Enter a FEN string to classify the opening and get its ECO code, name, and sub-variations.",
)
find_opening_by_name_tool = gr.Interface(
fn=find_opening_by_name,
inputs=gr.Textbox(label="Opening Name"),
outputs=gr.JSON(label="Opening Details"),
title="Find Opening by Name",
description="Enter the name of a chess opening to find its ECO code, PGN, FEN, and sub-variations.",
)
app = gr.TabbedInterface(
[
get_position_tool,
get_square_info_tool,
get_top_moves_tool,
analyze_pawn_structure_tool,
analyze_tactical_patterns_tool,
evaluate_king_safety_tool,
classify_opening_tool,
find_opening_by_name_tool,
],
tab_names=[
"Get Position",
"Get Square Info",
"Get Top Moves",
"Analyze Pawn Structure",
"Analyze Tactical Patterns",
"Evaluate King Safety",
"Classify Opening",
"Find Opening by Name",
],
title="Chess Tools",
)
if __name__ == "__main__":
app.launch(mcp_server=True)
|