File size: 32,351 Bytes
63aad13
 
acf0228
63aad13
 
 
 
1146644
29f83d8
 
63aad13
 
bc355a9
 
 
5342779
bc355a9
63aad13
5342779
63aad13
 
bc355a9
63aad13
 
 
 
 
 
 
 
 
 
 
 
e1eac06
 
 
 
 
 
 
 
 
 
 
 
 
 
0c436d0
e1eac06
 
 
63aad13
bc355a9
63aad13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be96dd0
 
63aad13
 
 
0c436d0
 
 
 
 
 
 
 
63aad13
e1eac06
ed7026a
e1eac06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63aad13
 
 
be96dd0
 
63aad13
 
 
 
088ff8c
 
 
 
63aad13
 
 
 
 
 
 
 
 
 
 
be96dd0
 
63aad13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be96dd0
 
63aad13
 
 
 
 
be96dd0
 
63aad13
 
 
 
 
 
 
be96dd0
 
63aad13
 
 
 
 
 
 
be96dd0
 
63aad13
 
acf0228
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63aad13
bc355a9
 
 
 
 
 
 
 
 
 
63aad13
2be263d
63aad13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3c2134
5342779
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30f141e
 
 
 
 
 
 
 
63aad13
 
 
 
 
5342779
 
 
 
 
63aad13
 
1146644
63aad13
 
 
 
 
c3c2134
 
63aad13
 
c56a0f7
63aad13
 
 
 
c56a0f7
63aad13
c56a0f7
63aad13
 
 
 
 
 
 
 
 
 
 
 
 
c56a0f7
 
 
 
 
 
 
 
 
 
 
63aad13
 
 
 
 
 
 
 
c56a0f7
63aad13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed7026a
63aad13
 
 
ed7026a
63aad13
 
 
 
 
 
 
 
 
ed7026a
63aad13
 
 
5c2bf26
63aad13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c56a0f7
63aad13
 
5342779
63aad13
30f141e
63aad13
 
 
 
 
 
 
 
 
 
be96dd0
63aad13
 
 
 
 
8159928
5342779
c56a0f7
 
63aad13
e1eac06
 
 
 
63aad13
e1eac06
737fdca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1eac06
 
 
 
 
 
ed7026a
63aad13
e1eac06
acf0228
63aad13
5342779
 
e1eac06
63aad13
 
acf0228
 
 
 
 
 
 
e1eac06
 
 
63aad13
e1eac06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63aad13
5342779
 
63aad13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1eac06
 
 
 
 
 
 
 
 
 
 
 
 
 
acf0228
29f83d8
 
 
 
 
acf0228
 
63aad13
 
 
62180cb
5342779
63aad13
 
 
acf0228
7cd1bf7
63aad13
 
 
7cd1bf7
63aad13
 
 
 
acf0228
7cd1bf7
a677ac6
 
 
48e0567
63aad13
e01838e
63aad13
e01838e
 
 
 
e1eac06
0c436d0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
import gradio as gr
from gradio_client import Client, handle_file
from PIL import Image, ImageFilter
import numpy as np
import os
import time
import logging
import io
import collections
import onnxruntime

from utils.utils import softmax, augment_image
from forensics.gradient import gradient_processing
from forensics.minmax import minmax_process
from forensics.ela import ELA
from forensics.wavelet import noise_estimation
from forensics.bitplane import bit_plane_extractor
from utils.hf_logger import log_inference_data
from utils.load import load_image
from agents.ensemble_team import EnsembleMonitorAgent, WeightOptimizationAgent, SystemHealthAgent
from agents.smart_agents import ContextualIntelligenceAgent, ForensicAnomalyDetectionAgent
from utils.registry import register_model, MODEL_REGISTRY, ModelEntry
from agents.ensemble_weights import ModelWeightManager
from transformers import pipeline, AutoImageProcessor, SwinForImageClassification, Swinv2ForImageClassification, AutoFeatureExtractor, AutoModelForImageClassification
from torchvision import transforms
import torch
import json
from huggingface_hub import CommitScheduler
from dotenv import load_dotenv

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
os.environ['HF_HUB_CACHE'] = './models'

# --- Gradio Log Handler ---
class GradioLogHandler(logging.Handler):
    def __init__(self, log_queue):
        super().__init__()
        self.log_queue = log_queue
        self.setFormatter(logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s'))

    def emit(self, record):
        self.log_queue.append(self.format(record))

log_queue = collections.deque(maxlen=1000) # Store last 1000 log messages
gradio_handler = GradioLogHandler(log_queue)

# Set root logger level to DEBUG to capture all messages from agents
logging.getLogger().setLevel(logging.INFO)
logging.getLogger().addHandler(gradio_handler)
# --- End Gradio Log Handler ---

LOCAL_LOG_DIR = "./hf_inference_logs"
HF_DATASET_NAME="aiwithoutborders-xyz/degentic_rd0"
load_dotenv()

# Custom JSON Encoder to handle numpy types
class NumpyEncoder(json.JSONEncoder):
    def default(self, obj):
        if isinstance(obj, np.float32):
            return float(obj)
        return json.JSONEncoder.default(self, obj)

# Ensure using GPU if available
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# Model paths and class names (copied from app_mcp.py)
MODEL_PATHS = {
    "model_1": "haywoodsloan/ai-image-detector-deploy",
    "model_2": "Heem2/AI-vs-Real-Image-Detection",
    "model_3": "Organika/sdxl-detector",
    "model_4": "cmckinle/sdxl-flux-detector_v1.1",
    "model_5": "prithivMLmods/Deep-Fake-Detector-v2-Model",
    "model_6": "ideepankarsharma2003/AI_ImageClassification_MidjourneyV6_SDXL",
    "model_7": "date3k2/vit-real-fake-classification-v4"
}

CLASS_NAMES = {
    "model_1": ['artificial', 'real'],
    "model_2": ['AI Image', 'Real Image'],
    "model_3": ['AI', 'Real'],
    "model_4": ['AI', 'Real'],
    "model_5": ['Realism', 'Deepfake'],
    "model_6": ['ai_gen', 'human'],
    "model_7": ['Fake', 'Real'],
}

def preprocess_resize_256(image):
    if image.mode != 'RGB':
        image = image.convert('RGB')
    return transforms.Resize((256, 256))(image)

def preprocess_resize_224(image):
    if image.mode != 'RGB':
        image = image.convert('RGB')
    return transforms.Resize((224, 224))(image)

def postprocess_pipeline(prediction, class_names):
    # Assumes HuggingFace pipeline output
    return {pred['label']: pred['score'] for pred in prediction}

def postprocess_logits(outputs, class_names):
    # Assumes model output with logits
    logits = outputs.logits.cpu().numpy()[0]
    probabilities = softmax(logits)
    return {class_names[i]: probabilities[i] for i in range(len(class_names))}

def register_model_with_metadata(model_id, model, preprocess, postprocess, class_names, display_name, contributor, model_path, architecture=None, dataset=None):
    entry = ModelEntry(model, preprocess, postprocess, class_names, display_name=display_name, contributor=contributor, model_path=model_path, architecture=architecture, dataset=dataset)
    MODEL_REGISTRY[model_id] = entry

# Load and register models (copied from app_mcp.py)
# image_processor_1 = AutoImageProcessor.from_pretrained(MODEL_PATHS["model_1"], use_fast=True)
# model_1 = Swinv2ForImageClassification.from_pretrained(MODEL_PATHS["model_1"]).to(device)
# clf_1 = pipeline(model=model_1, task="image-classification", image_processor=image_processor_1, device=device)
# register_model_with_metadata(
#     "model_1", clf_1, preprocess_resize_256, postprocess_pipeline, CLASS_NAMES["model_1"],
#     display_name="SWIN1", contributor="haywoodsloan", model_path=MODEL_PATHS["model_1"],
#     architecture="SwinV2", dataset="TBA"
# )

# --- ONNX Quantized Model Example ---
ONNX_QUANTIZED_MODEL_PATH = "./models/model_1_quantized.onnx"

def preprocess_onnx_input(image: Image.Image):
    # Preprocess image for ONNX model (e.g., for SwinV2, usually 256x256, normalized)
    if image.mode != 'RGB':
        image = image.convert('RGB')
    
    transform = transforms.Compose([
        transforms.Resize((256, 256)),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485,0.456,0.406], std=[0.229,0.224,0.225]), # ImageNet normalization
    ])
    input_tensor = transform(image)
    # ONNX expects numpy array with batch dimension (1, C, H, W)
    return input_tensor.unsqueeze(0).cpu().numpy()

def infer_onnx_model(preprocessed_image_np):
    try:
        # Ensure the ONNX model exists before trying to load it
        if not os.path.exists(ONNX_QUANTIZED_MODEL_PATH):
            logger.error(f"ONNX quantized model not found at: {ONNX_QUANTIZED_MODEL_PATH}")
            raise FileNotFoundError(f"ONNX quantized model not found at: {ONNX_QUANTIZED_MODEL_PATH}")

        ort_session = onnxruntime.InferenceSession(ONNX_QUANTIZED_MODEL_PATH)
        ort_inputs = {ort_session.get_inputs()[0].name: preprocessed_image_np}
        ort_outputs = ort_session.run(None, ort_inputs)
        
        # Assuming the output is logits, apply softmax to get probabilities
        logits = ort_outputs[0]
        probabilities = softmax(logits[0]) # Remove batch dim, apply softmax
        return {"logits": logits, "probabilities": probabilities}

    except Exception as e:
        logger.error(f"Error during ONNX inference: {e}")
        # Return a structure consistent with other model errors
        return {"logits": np.array([]), "probabilities": np.array([])}

def postprocess_onnx_output(onnx_output, class_names):
    probabilities = onnx_output.get("probabilities")
    if probabilities is not None and len(probabilities) == len(class_names):
        return {class_names[i]: probabilities[i] for i in range(len(class_names))}
    else:
        logger.warning("ONNX post-processing failed or class names mismatch.")
        return {name: 0.0 for name in class_names}

# Register the ONNX quantized model
register_model_with_metadata(
    "model_1_onnx_quantized", 
    infer_onnx_model, 
    preprocess_onnx_input, 
    postprocess_onnx_output, 
    CLASS_NAMES["model_1"], # Assuming it uses the same class names as model_1
    display_name="SWIN1", 
    contributor="haywoodsloan", 
    model_path=ONNX_QUANTIZED_MODEL_PATH,
    architecture="SwinV2", 
    dataset="TBA"
)
# --- End ONNX Quantized Model Example ---

clf_2 = pipeline("image-classification", model=MODEL_PATHS["model_2"], device=device)
register_model_with_metadata(
    "model_2", clf_2, preprocess_resize_224, postprocess_pipeline, CLASS_NAMES["model_2"],
    display_name="VIT2", contributor="Heem2", model_path=MODEL_PATHS["model_2"],
    architecture="ViT", dataset="TBA"
)

feature_extractor_3 = AutoFeatureExtractor.from_pretrained(MODEL_PATHS["model_3"], device=device)
model_3 = AutoModelForImageClassification.from_pretrained(MODEL_PATHS["model_3"]).to(device)
def preprocess_256(image):
    if image.mode != 'RGB':
        image = image.convert('RGB')
    return transforms.Resize((256, 256))(image)
def postprocess_logits_model3(outputs, class_names):
    logits = outputs.logits.cpu().numpy()[0]
    probabilities = softmax(logits)
    return {class_names[i]: probabilities[i] for i in range(len(class_names))}
def model3_infer(image):
    inputs = feature_extractor_3(image, return_tensors="pt").to(device)
    with torch.no_grad():
        outputs = model_3(**inputs)
    return outputs
register_model_with_metadata(
    "model_3", model3_infer, preprocess_256, postprocess_logits_model3, CLASS_NAMES["model_3"],
    display_name="SDXL3", contributor="Organika", model_path=MODEL_PATHS["model_3"],
    architecture="VIT", dataset="SDXL"
)

feature_extractor_4 = AutoFeatureExtractor.from_pretrained(MODEL_PATHS["model_4"], device=device)
model_4 = AutoModelForImageClassification.from_pretrained(MODEL_PATHS["model_4"]).to(device)
def model4_infer(image):
    inputs = feature_extractor_4(image, return_tensors="pt").to(device)
    with torch.no_grad():
        outputs = model_4(**inputs)
    return outputs
def postprocess_logits_model4(outputs, class_names):
    logits = outputs.logits.cpu().numpy()[0]
    probabilities = softmax(logits)
    return {class_names[i]: probabilities[i] for i in range(len(class_names))}
register_model_with_metadata(
    "model_4", model4_infer, preprocess_256, postprocess_logits_model4, CLASS_NAMES["model_4"],
    display_name="XLFLUX4", contributor="cmckinle", model_path=MODEL_PATHS["model_4"],
    architecture="VIT", dataset="SDXL, FLUX"
)

clf_5 = pipeline("image-classification", model=MODEL_PATHS["model_5"], device=device)
register_model_with_metadata(
    "model_5", clf_5, preprocess_resize_224, postprocess_pipeline, CLASS_NAMES["model_5"],
    display_name="VIT5", contributor="prithivMLmods", model_path=MODEL_PATHS["model_5"],
    architecture="VIT", dataset="TBA"
)

image_processor_6 = AutoImageProcessor.from_pretrained(MODEL_PATHS["model_6"], use_fast=True)
model_6 = SwinForImageClassification.from_pretrained(MODEL_PATHS["model_6"]).to(device)
clf_6 = pipeline(model=model_6, task="image-classification", image_processor=image_processor_6, device=device)
register_model_with_metadata(
    "model_6", clf_6, preprocess_resize_224, postprocess_pipeline, CLASS_NAMES["model_6"],
    display_name="SWIN6", contributor="ideepankarsharma2003", model_path=MODEL_PATHS["model_6"],
    architecture="SWINv1", dataset="SDXL, Midjourney"
)

image_processor_7 = AutoImageProcessor.from_pretrained(MODEL_PATHS["model_7"], use_fast=True)
model_7 = AutoModelForImageClassification.from_pretrained(MODEL_PATHS["model_7"]).to(device)
clf_7 = pipeline(model=model_7, task="image-classification", image_processor=image_processor_7, device=device)
register_model_with_metadata(
    "model_7", clf_7, preprocess_resize_224, postprocess_pipeline, CLASS_NAMES["model_7"],
    display_name="VIT7", contributor="date3k2", model_path=MODEL_PATHS["model_7"],
    architecture="VIT", dataset="TBA"
)

# def postprocess_simple_prediction(result, class_names):
#     scores = {name: 0.0 for name in class_names}
#     fake_prob = result.get("Fake Probability")
#     if fake_prob is not None:
#         # Assume class_names = ["AI", "REAL"]
#         scores["AI"] = float(fake_prob)
#         scores["REAL"] = 1.0 - float(fake_prob)
#     return scores

# def simple_prediction(img):
#     client = Client("aiwithoutborders-xyz/OpenSight-Community-Forensics-Preview")
#     client.view_api()
#     print(type(img))
#     result = client.predict(
#            handle_file(img),
#            api_name="simple_predict"
#     )
#     return result


# register_model_with_metadata(
#     model_id="simple_prediction",
#     model=simple_prediction,
#     preprocess=None,
#     postprocess=postprocess_simple_prediction,
#     class_names=["AI", "REAL"], 
#     display_name="Community Forensics",
#     contributor="Jeongsoo Park",
#     model_path="aiwithoutborders-xyz/CommunityForensics-DeepfakeDet-ViT",
#     architecture="ViT", dataset="GOAT"
# )
def infer(image: Image.Image, model_id: str, confidence_threshold: float = 0.75) -> dict:
    """Predict using a specific model.

    Args:
        image (Image.Image): The input image to classify.
        model_id (str): The ID of the model to use for classification.
        confidence_threshold (float, optional): The confidence threshold for classification. Defaults to 0.75.

    Returns:
        dict: A dictionary containing the model details, classification scores, and label.
    """
    entry = MODEL_REGISTRY[model_id]
    img = entry.preprocess(image) if entry.preprocess else image
    try:
        result = entry.model(img)
        scores = entry.postprocess(result, entry.class_names)
        ai_score = float(scores.get(entry.class_names[0], 0.0))
        real_score = float(scores.get(entry.class_names[1], 0.0))
        label = "AI" if ai_score >= confidence_threshold else ("REAL" if real_score >= confidence_threshold else "UNCERTAIN")
        return {
            "Model": entry.display_name,
            "Contributor": entry.contributor,
            "HF Model Path": entry.model_path,
            "AI Score": ai_score,
            "Real Score": real_score,
            "Label": label
        }
    except Exception as e:
        return {
            "Model": entry.display_name,
            "Contributor": entry.contributor,
            "HF Model Path": entry.model_path,
            "AI Score": 0.0,
            "Real Score": 0.0,
            "Label": f"Error: {str(e)}"
        }

def full_prediction(img, confidence_threshold, rotate_degrees, noise_level, sharpen_strength):
    """Full prediction run, with a team of ensembles and agents.

    Args:
        img (url: str, Image.Image, np.ndarray): The input image to classify.
        confidence_threshold (float, optional): The confidence threshold for classification. Defaults to 0.75.
        rotate_degrees (int, optional): The degrees to rotate the image.
        noise_level (int, optional): The noise level to use.
        sharpen_strength (int, optional): The sharpen strength to use.

    Returns:
        dict: A dictionary containing the model details, classification scores, and label.
    """
    # Ensure img is a PIL Image object
    if img is None:
        raise gr.Error("No image provided. Please upload an image to analyze.")
    # Handle filepath conversion if needed
    if isinstance(img, str):
        try:
            img = load_image(img)
        except Exception as e:
            logger.error(f"Error loading image from path: {e}")
            raise gr.Error(f"Could not load image from the provided path. Error: {str(e)}")
        
    if not isinstance(img, Image.Image):
        try:
            img = Image.fromarray(img)
        except Exception as e:
            logger.error(f"Error converting input image to PIL: {e}")
            raise gr.Error("Input image could not be converted to a valid image format. Please try another image.")

    # Ensure image is in RGB format for consistent processing
    if img.mode != 'RGB':
        img = img.convert('RGB')

    monitor_agent = EnsembleMonitorAgent()
    weight_manager = ModelWeightManager(strongest_model_id="simple_prediction")
    optimization_agent = WeightOptimizationAgent(weight_manager)
    health_agent = SystemHealthAgent()
    context_agent = ContextualIntelligenceAgent()
    anomaly_agent = ForensicAnomalyDetectionAgent()
    health_agent.monitor_system_health()
    if rotate_degrees or noise_level or sharpen_strength:
        img_pil, _ = augment_image(img, ["rotate", "add_noise", "sharpen"], rotate_degrees, noise_level, sharpen_strength)
    else:
        img_pil = img
    img_np_og = np.array(img)

    model_predictions_raw = {}
    confidence_scores = {}
    results = []
    table_rows = []

    # Stream results as each model finishes
    for model_id in MODEL_REGISTRY:
        model_start = time.time()
        result = infer(img_pil, model_id, confidence_threshold)
        model_end = time.time()
        monitor_agent.monitor_prediction(
            model_id,
            result["Label"],
            max(result.get("AI Score", 0.0), result.get("Real Score", 0.0)),
            model_end - model_start
        )
        model_predictions_raw[model_id] = result
        confidence_scores[model_id] = max(result.get("AI Score", 0.0), result.get("Real Score", 0.0))
        results.append(result)
        table_rows.append([
            result.get("Model", ""),
            result.get("Contributor", ""),
            round(result.get("AI Score", 0.0), 3) if result.get("AI Score") is not None else 0.0,
            round(result.get("Real Score", 0.0), 3) if result.get("Real Score") is not None else 0.0,
            result.get("Label", "Error")
        ])
        # Yield partial results: only update the table, others are None
        yield None, None, table_rows, None, None

    # After all models, compute the rest as before
    image_data_for_context = {
        "width": img.width,
        "height": img.height,
        "mode": img.mode,
    }
    detected_context_tags = context_agent.infer_context_tags(image_data_for_context, model_predictions_raw)
    logger.info(f"Detected context tags: {detected_context_tags}")
    adjusted_weights = weight_manager.adjust_weights(model_predictions_raw, confidence_scores, context_tags=detected_context_tags)
    weighted_predictions = {"AI": 0.0, "REAL": 0.0, "UNCERTAIN": 0.0}
    for model_id, prediction in model_predictions_raw.items():
        prediction_label = prediction.get("Label")
        if prediction_label in weighted_predictions:
            weighted_predictions[prediction_label] += adjusted_weights[model_id]
        else:
            logger.warning(f"Unexpected prediction label '{prediction_label}' from model '{model_id}'. Skipping its weight in consensus.")
    final_prediction_label = "UNCERTAIN"
    if weighted_predictions["AI"] > weighted_predictions["REAL"] and weighted_predictions["AI"] > weighted_predictions["UNCERTAIN"]:
        final_prediction_label = "AI"
    elif weighted_predictions["REAL"] > weighted_predictions["AI"] and weighted_predictions["REAL"] > weighted_predictions["UNCERTAIN"]:
        final_prediction_label = "REAL"
    optimization_agent.analyze_performance(final_prediction_label, None)
    gradient_image = gradient_processing(img_np_og)
    gradient_image2 = gradient_processing(img_np_og, intensity=45, equalize=True)
    minmax_image = minmax_process(img_np_og)
    minmax_image2 = minmax_process(img_np_og, radius=6)
    # bitplane_image = bit_plane_extractor(img_pil)
    ela1 = ELA(img_np_og, quality=75, scale=50, contrast=20, linear=False, grayscale=True)
    ela2 = ELA(img_np_og, quality=75, scale=75, contrast=25, linear=False, grayscale=True)
    ela3 = ELA(img_np_og, quality=75, scale=75, contrast=25, linear=False, grayscale=False)
    forensics_images = [img_pil, ela1, ela2, ela3, gradient_image, gradient_image2, minmax_image, minmax_image2]
    forensic_output_descriptions = [
        f"Original augmented image (PIL): {img_pil.width}x{img_pil.height}",
        "ELA analysis (Pass 1): Grayscale error map, quality 75.",
        "ELA analysis (Pass 2): Grayscale error map, quality 75, enhanced contrast.",
        "ELA analysis (Pass 3): Color error map, quality 75, enhanced contrast.",
        "Gradient processing: Highlights edges and transitions.",
        "Gradient processing: Int=45, Equalize=True",
        "MinMax processing: Deviations in local pixel values.",
        "MinMax processing (Radius=6): Deviations in local pixel values.",
        # "Bit Plane extractor: Visualization of individual bit planes from different color channels."
    ]
    anomaly_detection_results = anomaly_agent.analyze_forensic_outputs(forensic_output_descriptions)
    logger.info(f"Forensic anomaly detection: {anomaly_detection_results['summary']}")
    consensus_html = f"<div style='font-size: 2.2em; font-weight: bold;padding: 10px;'>Consensus: <span style='color:{'red' if final_prediction_label == 'AI' else ('green' if final_prediction_label == 'REAL' else 'orange')}'>{final_prediction_label}</span></div>"
    inference_params = {
        "confidence_threshold": confidence_threshold,
        "rotate_degrees": rotate_degrees,
        "noise_level": noise_level,
        "sharpen_strength": sharpen_strength,
        "detected_context_tags": detected_context_tags
    }
    ensemble_output_data = {
        "final_prediction_label": final_prediction_label,
        "weighted_predictions": weighted_predictions,
        "adjusted_weights": adjusted_weights
    }
    agent_monitoring_data_log = {
        "ensemble_monitor": {
            "alerts": monitor_agent.alerts,
            "performance_metrics": monitor_agent.performance_metrics
        },
        "weight_optimization": {
            "prediction_history_length": len(optimization_agent.prediction_history),
        },
        "system_health": {
            "memory_usage": health_agent.health_metrics["memory_usage"],
            "gpu_utilization": health_agent.health_metrics["gpu_utilization"]
        },
        "context_intelligence": {
            "detected_context_tags": detected_context_tags
        },
        "forensic_anomaly_detection": anomaly_detection_results
    }
    log_inference_data(
        original_image=img,
        inference_params=inference_params,
        model_predictions=results,
        ensemble_output=ensemble_output_data,
        forensic_images=forensics_images,
        agent_monitoring_data=agent_monitoring_data_log,
        human_feedback=None
    )
    cleaned_forensics_images = []
    for f_img in forensics_images:
        if isinstance(f_img, Image.Image):
            cleaned_forensics_images.append(f_img)
        elif isinstance(f_img, np.ndarray):
            try:
                cleaned_forensics_images.append(Image.fromarray(f_img))
            except Exception as e:
                logger.warning(f"Could not convert numpy array to PIL Image for gallery: {e}")
        else:
            logger.warning(f"Unexpected type in forensic_images: {type(f_img)}. Skipping.")
    logger.info(f"Cleaned forensic images types: {[type(img) for img in cleaned_forensics_images]}")
    for i, res_dict in enumerate(results):
        for key in ["AI Score", "Real Score"]:
            value = res_dict.get(key)
            if isinstance(value, np.float32):
                res_dict[key] = float(value)
                logger.info(f"Converted {key} for result {i} from numpy.float32 to float.")
    json_results = json.dumps(results, cls=NumpyEncoder)
    yield img_pil, cleaned_forensics_images, table_rows, json_results, consensus_html

detection_model_eval_playground = gr.Interface(
    fn=full_prediction,
    inputs=[
        gr.Image(label="Upload Image to Analyze", sources=['upload', 'webcam'], type='filepath'),
        gr.Slider(0.0, 1.0, value=0.7, step=0.05, label="Confidence Threshold"),
        gr.Slider(0, 45, value=0, step=1, label="Rotate Degrees", visible=False),
        gr.Slider(0, 50, value=0, step=1, label="Noise Level", visible=False),
        gr.Slider(0, 50, value=0, step=1, label="Sharpen Strength", visible=False)
    ],
    outputs=[
        gr.Image(label="Processed Image", visible=False),
        gr.Gallery(label="Post Processed Images", visible=True, columns=[4], rows=[2], container=False, height="auto", object_fit="contain", elem_id="post-gallery"),
        gr.Dataframe(
            label="Model Predictions",
            headers=["Arch / Dataset", "By", "AI", "Real", "Label"],
            datatype=["str", "str", "number", "number", "str"]
        ),
        gr.JSON(label="Raw Model Results", visible=False),
        gr.Markdown(label="Consensus", value="")
    ],
    title="Multi-Model Ensemble + Agentic Coordinated Deepfake Detection (Paper in Progress)",
    description="The detection of AI-generated images has entered a critical inflection point. While existing solutions struggle with outdated datasets and inflated claims, our approach prioritizes agility, community collaboration, and an offensive approach to deepfake detection.",
    api_name="predict",
    live=True  # Enable streaming
)
# def echo_headers(x, request: gr.Request):
#     print(dict(request.headers))
#     return str(dict(request.headers))


def predict(img):
    """
    Predicts whether an image is AI-generated or real using the SOTA Community Forensics model.

    Args:
        img (str): Path to the input image file to analyze.

    Returns:
        dict: A dictionary containing:
            - 'Fake Probability' (float): Probability score between 0 and 1 indicating likelihood of being AI-generated
            - 'Result Description' (str): Human-readable description of the prediction result

    Example:
        >>> result = predict("path/to/image.jpg")
        >>> print(result)
        {'Fake Probability': 0.002, 'Result Description': 'The image is likely real.'}
    """
    client = Client("aiwithoutborders-xyz/OpenSight-Community-Forensics-Preview")
    client.view_api()
    result = client.predict(
        handle_file(img),
        api_name="/simple_predict"
    )
    return str(result)
community_forensics_preview = gr.Interface(
    fn=predict,
    inputs=gr.Image(type="filepath"),
    outputs=gr.HTML(), # or gr.Markdown() if it's just text
    title="Quick and simple prediction by our strongest model.",
    description="No ensemble, no context, no agents, just a quick and simple prediction by our strongest model.",
    api_name="predict"
)

# leaderboard = gr.Interface(
#     fn=lambda: "# AI Generated / Deepfake Detection Models Leaderboard: Soon™",
#     inputs=None,
#     outputs=gr.Markdown(),
#     title="Leaderboard",
#     api_name="leaderboard"
# )
def simple_prediction(img):
    """
    Quick and simple deepfake or real image prediction by the strongest open-source model on the hub.

    Args:
        img (str): The input image to analyze, provided as a file path.

    Returns:
        str: The prediction result stringified from dict. Example: `{'Fake Probability': 0.002, 'Result Description': 'The image is likely real.'}`
    """    
    client = Client("aiwithoutborders-xyz/OpenSight-Community-Forensics-Preview")
    client.view_api()
    client.predict(
        handle_file(img),
        api_name="simple_predict"
    )
simple_predict_interface = gr.Interface(
    fn=simple_prediction,
    inputs=gr.Image(type="filepath"),
    outputs=gr.Text(),
    title="Quick and simple prediction by our strongest model.",
    description="No ensemble, no context, no agents, just a quick and simple prediction by our strongest model.",
    api_name="simple_predict"
)

noise_estimation_interface = gr.Interface(
    fn=noise_estimation,
    inputs=[gr.Image(type="pil"), gr.Slider(1, 32, value=8, step=1, label="Block Size")],
    outputs=gr.Image(type="pil"),
    title="Wavelet-Based Noise Analysis",
    description="Analyzes image noise patterns using wavelet decomposition. This tool helps detect compression artifacts and artificial noise patterns that may indicate image manipulation. Higher noise levels in specific regions can reveal areas of potential tampering.",
    api_name="tool_waveletnoise"
)

bit_plane_interface = gr.Interface(
    fn=bit_plane_extractor,
    inputs=[
        gr.Image(type="pil"),
        gr.Dropdown(["Luminance", "Red", "Green", "Blue", "RGB Norm"], label="Channel", value="Luminance"),
        gr.Slider(0, 7, value=0, step=1, label="Bit Plane"),
        gr.Dropdown(["Disabled", "Median", "Gaussian"], label="Filter", value="Disabled")
    ],
    outputs=gr.Image(type="pil"),
    title="Bit Plane Analysis",
    description="Extracts and visualizes individual bit planes from different color channels. This forensic tool helps identify hidden patterns and artifacts in image data that may indicate manipulation. Different bit planes can reveal inconsistencies in image processing or editing.",
    api_name="tool_bitplane"
)

ela_interface = gr.Interface(
    fn=ELA,
    inputs=[
        gr.Image(type="pil", label="Input Image"),
        gr.Slider(1, 100, value=75, step=1, label="JPEG Quality"),
        gr.Slider(1, 100, value=50, step=1, label="Output Scale (Multiplicative Gain)"),
        gr.Slider(0, 100, value=20, step=1, label="Output Contrast (Tonality Compression)"),
        gr.Checkbox(value=False, label="Use Linear Difference"),
        gr.Checkbox(value=False, label="Grayscale Output")
    ],
    outputs=gr.Image(type="pil"),
    title="Error Level Analysis (ELA)",
    description="Performs Error Level Analysis to detect re-saved JPEG images, which can indicate tampering. ELA highlights areas of an image that have different compression levels.",
    api_name="tool_ela"
)

gradient_processing_interface = gr.Interface(
    fn=gradient_processing,
    inputs=[
        gr.Image(type="pil", label="Input Image"),
        gr.Slider(0, 100, value=90, step=1, label="Intensity"),
        gr.Dropdown(["Abs", "None", "Flat", "Norm"], label="Blue Mode", value="Abs"),
        gr.Checkbox(value=False, label="Invert Gradients"),
        gr.Checkbox(value=False, label="Equalize Histogram")
    ],
    outputs=gr.Image(type="pil"),
    title="Gradient Processing",
    description="Applies gradient filters to an image to enhance edges and transitions, which can reveal inconsistencies due to manipulation.",
    api_name="tool_gradient_processing"
)

minmax_processing_interface = gr.Interface(
    fn=minmax_process,
    inputs=[
        gr.Image(type="pil", label="Input Image"),
        gr.Radio([0, 1, 2, 3, 4], label="Channel (0:Grayscale, 1:Blue, 2:Green, 3:Red, 4:RGB Norm)", value=4),
        gr.Slider(0, 10, value=2, step=1, label="Radius")
    ],
    outputs=gr.Image(type="pil"),
    title="MinMax Processing",
    description="Analyzes local pixel value deviations to detect subtle changes in image data, often indicative of digital forgeries.",
    api_name="tool_minmax_processing"
)

# augmentation_tool_interface = gr.Interface(
#     fn=augment_image,
#     inputs=[
#         gr.Image(label="Upload Image to Augment", sources=['upload', 'webcam'], type='pil'),
#         gr.CheckboxGroup(["rotate", "add_noise", "sharpen"], label="Augmentation Methods"),
#         gr.Slider(0, 360, value=0, step=1, label="Rotate Degrees", visible=True),
#         gr.Slider(0, 100, value=0, step=1, label="Noise Level", visible=True),
#         gr.Slider(0, 200, value=1, step=1, label="Sharpen Strength", visible=True)
#     ],
#     outputs=gr.Image(label="Augmented Image", type='pil'),
#     title="Image Augmentation Tool",
#     description="Apply various augmentation techniques to your image.",
#     api_name="augment_image"
# )

# def get_captured_logs():
#     # Retrieve all logs from the queue and clear it
#     logs = list(log_queue)
#     log_queue.clear() # Clear the queue after retrieving
#     return "\n".join(logs)


demo = gr.TabbedInterface(
    [
        detection_model_eval_playground,
        community_forensics_preview,
        noise_estimation_interface,
        bit_plane_interface,
        ela_interface,
        gradient_processing_interface,
        minmax_processing_interface,
        # gr.Textbox(label="Agent Logs", interactive=False, lines=5, max_lines=20, autoscroll=True) # New textbox for logs
    ],
    [
        "Run Ensemble Prediction",
        "Open-Source SOTA Model",
        "Wavelet Blocking Noise Estimation",
        "Bit Plane Values",
        "Error Level Analysis (ELA)",
        "Gradient Processing",
        "MinMax Processing",
        # "Agent Logs" # New tab title
    ],
    title="Deepfake Detection & Forensics Tools",
    theme=None,

)
footer = gr.Markdown("### ⚠️ ENSEMBLE TEAM IN TRAINING ⚠️ \n\n**DISCLAIMER: METADATA AS WELL AS MEDIA SUBMITTED TO THIS SPACE MAY BE VIEWED AND SELECTED FOR FUTURE DATASETS, PLEASE DO NOT SUBMIT PERSONAL CONTENT. FOR UNTRACKED, PRIVATE USE OF THE MODELS YOU MAY STILL USE [THE ORIGINAL SPACE HERE](https://huggingface.co/spaces/aiwithoutborders-xyz/OpenSight-Deepfake-Detection-Models-Playground), SOTA MODEL INCLUDED.**", elem_classes="footer")

with gr.Blocks() as app:
    demo.render()
    footer.render()
    

app.queue(max_size=10, default_concurrency_limit=2).launch(mcp_server=True)