custom server we go... soon
#3
by
LPX55
- opened
app.py
CHANGED
@@ -46,7 +46,7 @@ log_queue = collections.deque(maxlen=1000) # Store last 1000 log messages
|
|
46 |
gradio_handler = GradioLogHandler(log_queue)
|
47 |
|
48 |
# Set root logger level to DEBUG to capture all messages from agents
|
49 |
-
logging.getLogger().setLevel(logging.
|
50 |
logging.getLogger().addHandler(gradio_handler)
|
51 |
# --- End Gradio Log Handler ---
|
52 |
|
@@ -110,14 +110,14 @@ def register_model_with_metadata(model_id, model, preprocess, postprocess, class
|
|
110 |
MODEL_REGISTRY[model_id] = entry
|
111 |
|
112 |
# Load and register models (copied from app_mcp.py)
|
113 |
-
image_processor_1 = AutoImageProcessor.from_pretrained(MODEL_PATHS["model_1"], use_fast=True)
|
114 |
-
model_1 = Swinv2ForImageClassification.from_pretrained(MODEL_PATHS["model_1"]).to(device)
|
115 |
-
clf_1 = pipeline(model=model_1, task="image-classification", image_processor=image_processor_1, device=device)
|
116 |
-
register_model_with_metadata(
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
)
|
121 |
|
122 |
# --- ONNX Quantized Model Example ---
|
123 |
ONNX_QUANTIZED_MODEL_PATH = "./models/model_1_quantized.onnx"
|
@@ -714,7 +714,6 @@ with gr.Blocks() as app:
|
|
714 |
demo.render()
|
715 |
footer.render()
|
716 |
|
717 |
-
app.
|
718 |
|
719 |
-
|
720 |
-
app.launch(mcp_server=True)
|
|
|
46 |
gradio_handler = GradioLogHandler(log_queue)
|
47 |
|
48 |
# Set root logger level to DEBUG to capture all messages from agents
|
49 |
+
logging.getLogger().setLevel(logging.INFO)
|
50 |
logging.getLogger().addHandler(gradio_handler)
|
51 |
# --- End Gradio Log Handler ---
|
52 |
|
|
|
110 |
MODEL_REGISTRY[model_id] = entry
|
111 |
|
112 |
# Load and register models (copied from app_mcp.py)
|
113 |
+
# image_processor_1 = AutoImageProcessor.from_pretrained(MODEL_PATHS["model_1"], use_fast=True)
|
114 |
+
# model_1 = Swinv2ForImageClassification.from_pretrained(MODEL_PATHS["model_1"]).to(device)
|
115 |
+
# clf_1 = pipeline(model=model_1, task="image-classification", image_processor=image_processor_1, device=device)
|
116 |
+
# register_model_with_metadata(
|
117 |
+
# "model_1", clf_1, preprocess_resize_256, postprocess_pipeline, CLASS_NAMES["model_1"],
|
118 |
+
# display_name="SWIN1", contributor="haywoodsloan", model_path=MODEL_PATHS["model_1"],
|
119 |
+
# architecture="SwinV2", dataset="TBA"
|
120 |
+
# )
|
121 |
|
122 |
# --- ONNX Quantized Model Example ---
|
123 |
ONNX_QUANTIZED_MODEL_PATH = "./models/model_1_quantized.onnx"
|
|
|
714 |
demo.render()
|
715 |
footer.render()
|
716 |
|
717 |
+
app.unload(demo)
|
718 |
|
719 |
+
app.queue(max_size=10, default_concurrency_limit=2).launch(mcp_server=True)
|
|