Spaces:
Sleeping
Sleeping
update app.py
Browse files
app.py
CHANGED
@@ -1,948 +1,3 @@
|
|
1 |
-
# import streamlit as st
|
2 |
-
# import json
|
3 |
-
# import ee
|
4 |
-
# import os
|
5 |
-
# import pandas as pd
|
6 |
-
# import geopandas as gpd
|
7 |
-
# from datetime import datetime
|
8 |
-
# import leafmap.foliumap as leafmap
|
9 |
-
# import re
|
10 |
-
# from shapely.geometry import base
|
11 |
-
# from xml.etree import ElementTree as XET
|
12 |
-
# from concurrent.futures import ThreadPoolExecutor, as_completed
|
13 |
-
# import time
|
14 |
-
# import matplotlib.pyplot as plt
|
15 |
-
# import plotly.express as px
|
16 |
-
|
17 |
-
# # Set up the page layout
|
18 |
-
# st.set_page_config(layout="wide")
|
19 |
-
|
20 |
-
# # Custom button styling
|
21 |
-
# m = st.markdown(
|
22 |
-
# """
|
23 |
-
# <style>
|
24 |
-
# div.stButton > button:first-child {
|
25 |
-
# background-color: #006400;
|
26 |
-
# color:#ffffff;
|
27 |
-
# }
|
28 |
-
# </style>""",
|
29 |
-
# unsafe_allow_html=True,
|
30 |
-
# )
|
31 |
-
|
32 |
-
# # Logo and Title
|
33 |
-
# st.write(
|
34 |
-
# f"""
|
35 |
-
# <div style="display: flex; justify-content: space-between; align-items: center;">
|
36 |
-
# <img src="https://huggingface.co/spaces/YashMK89/SATRANG/resolve/main/ISRO_Logo.png" style="width: 20%; margin-right: auto;">
|
37 |
-
# <img src="https://huggingface.co/spaces/YashMK89/SATRANG/resolve/main/SAC_Logo.png" style="width: 20%; margin-left: auto;">
|
38 |
-
# </div>
|
39 |
-
# """,
|
40 |
-
# unsafe_allow_html=True,
|
41 |
-
# )
|
42 |
-
# st.markdown(
|
43 |
-
# f"""
|
44 |
-
# <div style="display: flex; flex-direction: column; align-items: center;">
|
45 |
-
# <img src="https://huggingface.co/spaces/YashMK89/SATRANG/resolve/main/SATRANG.png" style="width: 30%;">
|
46 |
-
# <h3 style="text-align: center; margin: 0;">( Spatial and Temporal Aggregation for Remote-sensing Analysis of GEE Data )</h3>
|
47 |
-
# </div>
|
48 |
-
# <hr>
|
49 |
-
# """,
|
50 |
-
# unsafe_allow_html=True,
|
51 |
-
# )
|
52 |
-
|
53 |
-
# # Authenticate and initialize Earth Engine
|
54 |
-
# earthengine_credentials = os.environ.get("EE_Authentication")
|
55 |
-
# os.makedirs(os.path.expanduser("~/.config/earthengine/"), exist_ok=True)
|
56 |
-
# with open(os.path.expanduser("~/.config/earthengine/credentials"), "w") as f:
|
57 |
-
# f.write(earthengine_credentials)
|
58 |
-
# ee.Initialize(project='ee-yashsacisro24')
|
59 |
-
|
60 |
-
# # Helper function to get reducer
|
61 |
-
# def get_reducer(reducer_name):
|
62 |
-
# reducers = {
|
63 |
-
# 'mean': ee.Reducer.mean(),
|
64 |
-
# 'sum': ee.Reducer.sum(),
|
65 |
-
# 'median': ee.Reducer.median(),
|
66 |
-
# 'min': ee.Reducer.min(),
|
67 |
-
# 'max': ee.Reducer.max(),
|
68 |
-
# 'count': ee.Reducer.count(),
|
69 |
-
# }
|
70 |
-
# return reducers.get(reducer_name.lower(), ee.Reducer.mean())
|
71 |
-
|
72 |
-
# # Function to convert geometry to Earth Engine format
|
73 |
-
# def convert_to_ee_geometry(geometry):
|
74 |
-
# if isinstance(geometry, base.BaseGeometry):
|
75 |
-
# if geometry.is_valid:
|
76 |
-
# geojson = geometry.__geo_interface__
|
77 |
-
# return ee.Geometry(geojson)
|
78 |
-
# else:
|
79 |
-
# raise ValueError("Invalid geometry: The polygon geometry is not valid.")
|
80 |
-
# elif isinstance(geometry, dict) or isinstance(geometry, str):
|
81 |
-
# try:
|
82 |
-
# if isinstance(geometry, str):
|
83 |
-
# geometry = json.loads(geometry)
|
84 |
-
# if 'type' in geometry and 'coordinates' in geometry:
|
85 |
-
# return ee.Geometry(geometry)
|
86 |
-
# else:
|
87 |
-
# raise ValueError("GeoJSON format is invalid.")
|
88 |
-
# except Exception as e:
|
89 |
-
# raise ValueError(f"Error parsing GeoJSON: {e}")
|
90 |
-
# elif isinstance(geometry, str) and geometry.lower().endswith(".kml"):
|
91 |
-
# try:
|
92 |
-
# tree = XET.parse(geometry)
|
93 |
-
# kml_root = tree.getroot()
|
94 |
-
# kml_namespace = {'kml': 'http://www.opengis.net/kml/2.2'}
|
95 |
-
# coordinates = kml_root.findall(".//kml:coordinates", kml_namespace)
|
96 |
-
# if coordinates:
|
97 |
-
# coords_text = coordinates[0].text.strip()
|
98 |
-
# coords = coords_text.split()
|
99 |
-
# coords = [tuple(map(float, coord.split(','))) for coord in coords]
|
100 |
-
# geojson = {"type": "Polygon", "coordinates": [coords]}
|
101 |
-
# return ee.Geometry(geojson)
|
102 |
-
# else:
|
103 |
-
# raise ValueError("KML does not contain valid coordinates.")
|
104 |
-
# except Exception as e:
|
105 |
-
# raise ValueError(f"Error parsing KML: {e}")
|
106 |
-
# else:
|
107 |
-
# raise ValueError("Unsupported geometry input type. Supported types are Shapely, GeoJSON, and KML.")
|
108 |
-
|
109 |
-
# # Function to calculate custom formula with dynamic scale handling
|
110 |
-
# def calculate_custom_formula(image, geometry, selected_bands, custom_formula, reducer_choice, dataset_id, user_scale=None):
|
111 |
-
# try:
|
112 |
-
# # Fetch the nominal scales of the selected bands
|
113 |
-
# band_scales = []
|
114 |
-
# for band in selected_bands:
|
115 |
-
# band_scale = image.select(band).projection().nominalScale().getInfo()
|
116 |
-
# band_scales.append(band_scale)
|
117 |
-
|
118 |
-
# # Determine the finest (smallest) scale among the selected bands
|
119 |
-
# default_scale = min(band_scales) if band_scales else 30 # Default to 30m if no bands are found
|
120 |
-
|
121 |
-
# # # Compute the finest scale among all bands
|
122 |
-
# # band_scales = [
|
123 |
-
# # first_image.select(band).projection().nominalScale().getInfo()
|
124 |
-
# # for band in first_image.bandNames().getInfo()
|
125 |
-
# # ]
|
126 |
-
# # default_scale = min(band_scales)
|
127 |
-
|
128 |
-
# # Use user-defined scale if provided, otherwise use the finest scale
|
129 |
-
|
130 |
-
# scale = user_scale if user_scale is not None else default_scale
|
131 |
-
|
132 |
-
# # Rescale all bands to the chosen scale
|
133 |
-
# rescaled_bands = {}
|
134 |
-
# for band in selected_bands:
|
135 |
-
# band_image = image.select(band)
|
136 |
-
# band_scale = band_image.projection().nominalScale().getInfo()
|
137 |
-
# if band_scale != scale:
|
138 |
-
# # Resample the band to match the target scale
|
139 |
-
# rescaled_band = band_image.resample('bilinear').reproject(
|
140 |
-
# crs=band_image.projection().crs(),
|
141 |
-
# scale=scale
|
142 |
-
# )
|
143 |
-
# rescaled_bands[band] = rescaled_band
|
144 |
-
# else:
|
145 |
-
# rescaled_bands[band] = band_image
|
146 |
-
|
147 |
-
# # Validate and extract band values
|
148 |
-
# reduced_values = {}
|
149 |
-
# reducer = get_reducer(reducer_choice)
|
150 |
-
# for band in selected_bands:
|
151 |
-
# value = rescaled_bands[band].reduceRegion(
|
152 |
-
# reducer=reducer,
|
153 |
-
# geometry=geometry,
|
154 |
-
# scale=scale # Use the determined scale here
|
155 |
-
# ).get(band).getInfo()
|
156 |
-
# reduced_values[band] = float(value if value is not None else 0)
|
157 |
-
|
158 |
-
# # Evaluate the custom formula
|
159 |
-
# formula = custom_formula
|
160 |
-
# for band in selected_bands:
|
161 |
-
# formula = formula.replace(band, str(reduced_values[band]))
|
162 |
-
# result = eval(formula, {"__builtins__": {}}, reduced_values)
|
163 |
-
|
164 |
-
# # Validate the result
|
165 |
-
# if not isinstance(result, (int, float)):
|
166 |
-
# raise ValueError("Formula did not result in a numeric value.")
|
167 |
-
|
168 |
-
# return ee.Image.constant(result).rename('custom_result')
|
169 |
-
|
170 |
-
# except ZeroDivisionError:
|
171 |
-
# st.error("Error: Division by zero in the formula.")
|
172 |
-
# return ee.Image(0).rename('custom_result').set('error', 'Division by zero')
|
173 |
-
# except SyntaxError:
|
174 |
-
# st.error(f"Error: Invalid syntax in formula '{custom_formula}'.")
|
175 |
-
# return ee.Image(0).rename('custom_result').set('error', 'Invalid syntax')
|
176 |
-
# except ValueError as e:
|
177 |
-
# st.error(f"Error: {str(e)}")
|
178 |
-
# return ee.Image(0).rename('custom_result').set('error', str(e))
|
179 |
-
# except Exception as e:
|
180 |
-
# st.error(f"Unexpected error: {e}")
|
181 |
-
# return ee.Image(0).rename('custom_result').set('error', str(e))
|
182 |
-
|
183 |
-
# # Aggregation functions
|
184 |
-
# def aggregate_data_custom(collection):
|
185 |
-
# collection = collection.map(lambda image: image.set('day', ee.Date(image.get('system:time_start')).format('YYYY-MM-dd')))
|
186 |
-
# grouped_by_day = collection.aggregate_array('day').distinct()
|
187 |
-
# def calculate_daily_mean(day):
|
188 |
-
# daily_collection = collection.filter(ee.Filter.eq('day', day))
|
189 |
-
# daily_mean = daily_collection.mean()
|
190 |
-
# return daily_mean.set('day', day)
|
191 |
-
# daily_images = ee.List(grouped_by_day.map(calculate_daily_mean))
|
192 |
-
# return ee.ImageCollection(daily_images)
|
193 |
-
|
194 |
-
# def aggregate_data_daily(collection):
|
195 |
-
# def set_day_start(image):
|
196 |
-
# date = ee.Date(image.get('system:time_start'))
|
197 |
-
# day_start = date.format('YYYY-MM-dd')
|
198 |
-
# return image.set('day_start', day_start)
|
199 |
-
# collection = collection.map(set_day_start)
|
200 |
-
# grouped_by_day = collection.aggregate_array('day_start').distinct()
|
201 |
-
# def calculate_daily_mean(day_start):
|
202 |
-
# daily_collection = collection.filter(ee.Filter.eq('day_start', day_start))
|
203 |
-
# daily_mean = daily_collection.mean()
|
204 |
-
# return daily_mean.set('day_start', day_start)
|
205 |
-
# daily_images = ee.List(grouped_by_day.map(calculate_daily_mean))
|
206 |
-
# return ee.ImageCollection(daily_images)
|
207 |
-
|
208 |
-
# def aggregate_data_weekly(collection, start_date_str, end_date_str):
|
209 |
-
# start_date = ee.Date(start_date_str)
|
210 |
-
# end_date = ee.Date(end_date_str)
|
211 |
-
# days_diff = end_date.difference(start_date, 'day')
|
212 |
-
# num_weeks = days_diff.divide(7).ceil().getInfo()
|
213 |
-
# weekly_images = []
|
214 |
-
# for week in range(num_weeks):
|
215 |
-
# week_start = start_date.advance(week * 7, 'day')
|
216 |
-
# week_end = week_start.advance(7, 'day')
|
217 |
-
# weekly_collection = collection.filterDate(week_start, week_end)
|
218 |
-
# if weekly_collection.size().getInfo() > 0:
|
219 |
-
# weekly_mean = weekly_collection.mean()
|
220 |
-
# weekly_mean = weekly_mean.set('week_start', week_start.format('YYYY-MM-dd'))
|
221 |
-
# weekly_images.append(weekly_mean)
|
222 |
-
# return ee.ImageCollection.fromImages(weekly_images)
|
223 |
-
|
224 |
-
# def aggregate_data_monthly(collection, start_date, end_date):
|
225 |
-
# collection = collection.filterDate(start_date, end_date)
|
226 |
-
# collection = collection.map(lambda image: image.set('month', ee.Date(image.get('system:time_start')).format('YYYY-MM')))
|
227 |
-
# grouped_by_month = collection.aggregate_array('month').distinct()
|
228 |
-
# def calculate_monthly_mean(month):
|
229 |
-
# monthly_collection = collection.filter(ee.Filter.eq('month', month))
|
230 |
-
# monthly_mean = monthly_collection.mean()
|
231 |
-
# return monthly_mean.set('month', month)
|
232 |
-
# monthly_images = ee.List(grouped_by_month.map(calculate_monthly_mean))
|
233 |
-
# return ee.ImageCollection(monthly_images)
|
234 |
-
|
235 |
-
# def aggregate_data_yearly(collection):
|
236 |
-
# collection = collection.map(lambda image: image.set('year', ee.Date(image.get('system:time_start')).format('YYYY')))
|
237 |
-
# grouped_by_year = collection.aggregate_array('year').distinct()
|
238 |
-
# def calculate_yearly_mean(year):
|
239 |
-
# yearly_collection = collection.filter(ee.Filter.eq('year', year))
|
240 |
-
# yearly_mean = yearly_collection.mean()
|
241 |
-
# return yearly_mean.set('year', year)
|
242 |
-
# yearly_images = ee.List(grouped_by_year.map(calculate_yearly_mean))
|
243 |
-
# return ee.ImageCollection(yearly_images)
|
244 |
-
|
245 |
-
# # Define the function before using it
|
246 |
-
# def calculate_cloud_percentage(image, cloud_band='QA60'):
|
247 |
-
# """
|
248 |
-
# Calculate the percentage of cloud-covered pixels in an image using the QA60 bitmask.
|
249 |
-
# Assumes the presence of the QA60 cloud mask band.
|
250 |
-
# """
|
251 |
-
# # Decode the QA60 bitmask
|
252 |
-
# qa60 = image.select(cloud_band)
|
253 |
-
# opaque_clouds = qa60.bitwiseAnd(1 << 10) # Bit 10: Opaque clouds
|
254 |
-
# cirrus_clouds = qa60.bitwiseAnd(1 << 11) # Bit 11: Cirrus clouds
|
255 |
-
# # Combine both cloud types into a single cloud mask
|
256 |
-
# cloud_mask = opaque_clouds.Or(cirrus_clouds)
|
257 |
-
# # Count total pixels and cloudy pixels
|
258 |
-
# total_pixels = qa60.reduceRegion(
|
259 |
-
# reducer=ee.Reducer.count(),
|
260 |
-
# geometry=image.geometry(),
|
261 |
-
# scale=60, # QA60 resolution is 60 meters
|
262 |
-
# maxPixels=1e13
|
263 |
-
# ).get(cloud_band)
|
264 |
-
# cloudy_pixels = cloud_mask.reduceRegion(
|
265 |
-
# reducer=ee.Reducer.sum(),
|
266 |
-
# geometry=image.geometry(),
|
267 |
-
# scale=60, # QA60 resolution is 60 meters
|
268 |
-
# maxPixels=1e13
|
269 |
-
# ).get(cloud_band)
|
270 |
-
# # Calculate cloud percentage
|
271 |
-
# if total_pixels == 0:
|
272 |
-
# return 0 # Avoid division by zero
|
273 |
-
# return ee.Number(cloudy_pixels).divide(ee.Number(total_pixels)).multiply(100)
|
274 |
-
|
275 |
-
# # Use the function in preprocessing
|
276 |
-
# def preprocess_collection(collection, tile_cloud_threshold, pixel_cloud_threshold):
|
277 |
-
# def filter_tile(image):
|
278 |
-
# cloud_percentage = calculate_cloud_percentage(image, cloud_band='QA60')
|
279 |
-
# return image.set('cloud_percentage', cloud_percentage).updateMask(cloud_percentage.lt(tile_cloud_threshold))
|
280 |
-
|
281 |
-
# def mask_cloudy_pixels(image):
|
282 |
-
# qa60 = image.select('QA60')
|
283 |
-
# opaque_clouds = qa60.bitwiseAnd(1 << 10)
|
284 |
-
# cirrus_clouds = qa60.bitwiseAnd(1 << 11)
|
285 |
-
# cloud_mask = opaque_clouds.Or(cirrus_clouds)
|
286 |
-
# clear_pixels = cloud_mask.Not()
|
287 |
-
# return image.updateMask(clear_pixels)
|
288 |
-
|
289 |
-
# filtered_collection = collection.map(filter_tile)
|
290 |
-
# masked_collection = filtered_collection.map(mask_cloudy_pixels)
|
291 |
-
# return masked_collection
|
292 |
-
|
293 |
-
# def process_single_geometry(row, start_date_str, end_date_str, dataset_id, selected_bands, reducer_choice, shape_type, aggregation_period, custom_formula, original_lat_col, original_lon_col, kernel_size=None, include_boundary=None, user_scale=None):
|
294 |
-
# if shape_type.lower() == "point":
|
295 |
-
# latitude = row.get('latitude')
|
296 |
-
# longitude = row.get('longitude')
|
297 |
-
# if pd.isna(latitude) or pd.isna(longitude):
|
298 |
-
# return None
|
299 |
-
# location_name = row.get('name', f"Location_{row.name}")
|
300 |
-
# if kernel_size == "3x3 Kernel":
|
301 |
-
# buffer_size = 45
|
302 |
-
# roi = ee.Geometry.Point([longitude, latitude]).buffer(buffer_size).bounds()
|
303 |
-
# elif kernel_size == "5x5 Kernel":
|
304 |
-
# buffer_size = 75
|
305 |
-
# roi = ee.Geometry.Point([longitude, latitude]).buffer(buffer_size).bounds()
|
306 |
-
# else:
|
307 |
-
# roi = ee.Geometry.Point([longitude, latitude])
|
308 |
-
# elif shape_type.lower() == "polygon":
|
309 |
-
# polygon_geometry = row.get('geometry')
|
310 |
-
# location_name = row.get('name', f"Polygon_{row.name}")
|
311 |
-
# try:
|
312 |
-
# roi = convert_to_ee_geometry(polygon_geometry)
|
313 |
-
# if not include_boundary:
|
314 |
-
# roi = roi.buffer(-30).bounds()
|
315 |
-
# except ValueError:
|
316 |
-
# return None
|
317 |
-
# collection = ee.ImageCollection(dataset_id) \
|
318 |
-
# .filterDate(ee.Date(start_date_str), ee.Date(end_date_str)) \
|
319 |
-
# .filterBounds(roi)
|
320 |
-
# if aggregation_period.lower() == 'custom (start date to end date)':
|
321 |
-
# collection = aggregate_data_custom(collection)
|
322 |
-
# elif aggregation_period.lower() == 'daily':
|
323 |
-
# collection = aggregate_data_daily(collection)
|
324 |
-
# elif aggregation_period.lower() == 'weekly':
|
325 |
-
# collection = aggregate_data_weekly(collection, start_date_str, end_date_str)
|
326 |
-
# elif aggregation_period.lower() == 'monthly':
|
327 |
-
# collection = aggregate_data_monthly(collection, start_date_str, end_date_str)
|
328 |
-
# elif aggregation_period.lower() == 'yearly':
|
329 |
-
# collection = aggregate_data_yearly(collection)
|
330 |
-
# image_list = collection.toList(collection.size())
|
331 |
-
# processed_weeks = set()
|
332 |
-
# aggregated_results = []
|
333 |
-
# for i in range(image_list.size().getInfo()):
|
334 |
-
# image = ee.Image(image_list.get(i))
|
335 |
-
# if aggregation_period.lower() == 'custom (start date to end date)':
|
336 |
-
# timestamp = image.get('day')
|
337 |
-
# period_label = 'Date'
|
338 |
-
# date = ee.Date(timestamp).format('YYYY-MM-dd').getInfo()
|
339 |
-
# elif aggregation_period.lower() == 'daily':
|
340 |
-
# timestamp = image.get('day_start')
|
341 |
-
# period_label = 'Date'
|
342 |
-
# date = ee.String(timestamp).getInfo()
|
343 |
-
# elif aggregation_period.lower() == 'weekly':
|
344 |
-
# timestamp = image.get('week_start')
|
345 |
-
# period_label = 'Week'
|
346 |
-
# date = ee.String(timestamp).getInfo()
|
347 |
-
# if (pd.to_datetime(date) < pd.to_datetime(start_date_str) or
|
348 |
-
# pd.to_datetime(date) > pd.to_datetime(end_date_str) or
|
349 |
-
# date in processed_weeks):
|
350 |
-
# continue
|
351 |
-
# processed_weeks.add(date)
|
352 |
-
# elif aggregation_period.lower() == 'monthly':
|
353 |
-
# timestamp = image.get('month')
|
354 |
-
# period_label = 'Month'
|
355 |
-
# date = ee.Date(timestamp).format('YYYY-MM').getInfo()
|
356 |
-
# elif aggregation_period.lower() == 'yearly':
|
357 |
-
# timestamp = image.get('year')
|
358 |
-
# period_label = 'Year'
|
359 |
-
# date = ee.Date(timestamp).format('YYYY').getInfo()
|
360 |
-
# index_image = calculate_custom_formula(image, roi, selected_bands, custom_formula, reducer_choice, dataset_id, user_scale=user_scale)
|
361 |
-
# try:
|
362 |
-
# index_value = index_image.reduceRegion(
|
363 |
-
# reducer=get_reducer(reducer_choice),
|
364 |
-
# geometry=roi,
|
365 |
-
# scale=user_scale
|
366 |
-
# ).get('custom_result')
|
367 |
-
# calculated_value = index_value.getInfo()
|
368 |
-
# if isinstance(calculated_value, (int, float)):
|
369 |
-
# result = {
|
370 |
-
# 'Location Name': location_name,
|
371 |
-
# period_label: date,
|
372 |
-
# 'Start Date': start_date_str,
|
373 |
-
# 'End Date': end_date_str,
|
374 |
-
# 'Calculated Value': calculated_value
|
375 |
-
# }
|
376 |
-
# if shape_type.lower() == 'point':
|
377 |
-
# result[original_lat_col] = latitude
|
378 |
-
# result[original_lon_col] = longitude
|
379 |
-
# aggregated_results.append(result)
|
380 |
-
# except Exception as e:
|
381 |
-
# st.error(f"Error retrieving value for {location_name}: {e}")
|
382 |
-
# return aggregated_results
|
383 |
-
|
384 |
-
# def process_aggregation(locations_df, start_date_str, end_date_str, dataset_id, selected_bands, reducer_choice, shape_type, aggregation_period, original_lat_col, original_lon_col, custom_formula="", kernel_size=None, include_boundary=None, tile_cloud_threshold=0, pixel_cloud_threshold=0, user_scale=None):
|
385 |
-
# aggregated_results = []
|
386 |
-
# total_steps = len(locations_df)
|
387 |
-
# progress_bar = st.progress(0)
|
388 |
-
# progress_text = st.empty()
|
389 |
-
# start_time = time.time()
|
390 |
-
# raw_collection = ee.ImageCollection(dataset_id) \
|
391 |
-
# .filterDate(ee.Date(start_date_str), ee.Date(end_date_str))
|
392 |
-
# st.write(f"Original Collection Size: {raw_collection.size().getInfo()}")
|
393 |
-
# if tile_cloud_threshold > 0 or pixel_cloud_threshold > 0:
|
394 |
-
# raw_collection = preprocess_collection(raw_collection, tile_cloud_threshold, pixel_cloud_threshold)
|
395 |
-
# st.write(f"Preprocessed Collection Size: {raw_collection.size().getInfo()}")
|
396 |
-
# with ThreadPoolExecutor(max_workers=10) as executor:
|
397 |
-
# futures = []
|
398 |
-
# for idx, row in locations_df.iterrows():
|
399 |
-
# future = executor.submit(
|
400 |
-
# process_single_geometry,
|
401 |
-
# row,
|
402 |
-
# start_date_str,
|
403 |
-
# end_date_str,
|
404 |
-
# dataset_id,
|
405 |
-
# selected_bands,
|
406 |
-
# reducer_choice,
|
407 |
-
# shape_type,
|
408 |
-
# aggregation_period,
|
409 |
-
# custom_formula,
|
410 |
-
# original_lat_col,
|
411 |
-
# original_lon_col,
|
412 |
-
# kernel_size,
|
413 |
-
# include_boundary,
|
414 |
-
# user_scale=user_scale
|
415 |
-
# )
|
416 |
-
# futures.append(future)
|
417 |
-
# completed = 0
|
418 |
-
# for future in as_completed(futures):
|
419 |
-
# result = future.result()
|
420 |
-
# if result:
|
421 |
-
# aggregated_results.extend(result)
|
422 |
-
# completed += 1
|
423 |
-
# progress_percentage = completed / total_steps
|
424 |
-
# progress_bar.progress(progress_percentage)
|
425 |
-
# progress_text.markdown(f"Processing: {int(progress_percentage * 100)}%")
|
426 |
-
# end_time = time.time()
|
427 |
-
# processing_time = end_time - start_time
|
428 |
-
# if aggregated_results:
|
429 |
-
# result_df = pd.DataFrame(aggregated_results)
|
430 |
-
# if aggregation_period.lower() == 'custom (start date to end date)':
|
431 |
-
# agg_dict = {
|
432 |
-
# 'Start Date': 'first',
|
433 |
-
# 'End Date': 'first',
|
434 |
-
# 'Calculated Value': 'mean' # Ensure this column is named 'Calculated Value'
|
435 |
-
# }
|
436 |
-
# if shape_type.lower() == 'point':
|
437 |
-
# agg_dict[original_lat_col] = 'first'
|
438 |
-
# agg_dict[original_lon_col] = 'first'
|
439 |
-
# aggregated_output = result_df.groupby('Location Name').agg(agg_dict).reset_index()
|
440 |
-
# aggregated_output['Date Range'] = aggregated_output['Start Date'] + " to " + aggregated_output['End Date']
|
441 |
-
# return aggregated_output.to_dict(orient='records'), processing_time
|
442 |
-
# else:
|
443 |
-
# return result_df.to_dict(orient='records'), processing_time
|
444 |
-
# return [], processing_time
|
445 |
-
|
446 |
-
# # Streamlit App Logic
|
447 |
-
# st.markdown("<h5>Image Collection</h5>", unsafe_allow_html=True)
|
448 |
-
# imagery_base = st.selectbox("Select Imagery Base", ["Sentinel", "Landsat", "MODIS", "VIIRS", "Custom Input"], index=0)
|
449 |
-
# data = {}
|
450 |
-
# if imagery_base == "Sentinel":
|
451 |
-
# dataset_file = "sentinel_datasets.json"
|
452 |
-
# try:
|
453 |
-
# with open(dataset_file) as f:
|
454 |
-
# data = json.load(f)
|
455 |
-
# except FileNotFoundError:
|
456 |
-
# st.error(f"Dataset file '{dataset_file}' not found.")
|
457 |
-
# data = {}
|
458 |
-
# elif imagery_base == "Landsat":
|
459 |
-
# dataset_file = "landsat_datasets.json"
|
460 |
-
# try:
|
461 |
-
# with open(dataset_file) as f:
|
462 |
-
# data = json.load(f)
|
463 |
-
# except FileNotFoundError:
|
464 |
-
# st.error(f"Dataset file '{dataset_file}' not found.")
|
465 |
-
# data = {}
|
466 |
-
# elif imagery_base == "MODIS":
|
467 |
-
# dataset_file = "modis_datasets.json"
|
468 |
-
# try:
|
469 |
-
# with open(dataset_file) as f:
|
470 |
-
# data = json.load(f)
|
471 |
-
# except FileNotFoundError:
|
472 |
-
# st.error(f"Dataset file '{dataset_file}' not found.")
|
473 |
-
# data = {}
|
474 |
-
# elif imagery_base == "VIIRS":
|
475 |
-
# dataset_file = "viirs_datasets.json"
|
476 |
-
# try:
|
477 |
-
# with open(dataset_file) as f:
|
478 |
-
# data = json.load(f)
|
479 |
-
# except FileNotFoundError:
|
480 |
-
# st.error(f"Dataset file '{dataset_file}' not found.")
|
481 |
-
# data = {}
|
482 |
-
# elif imagery_base == "Custom Input":
|
483 |
-
# custom_dataset_id = st.text_input("Enter Custom Earth Engine Dataset ID (e.g., AHN/AHN4)", value="")
|
484 |
-
# if custom_dataset_id:
|
485 |
-
# try:
|
486 |
-
# if custom_dataset_id.startswith("ee.ImageCollection("):
|
487 |
-
# custom_dataset_id = custom_dataset_id.replace("ee.ImageCollection('", "").replace("')", "")
|
488 |
-
# collection = ee.ImageCollection(custom_dataset_id)
|
489 |
-
# first_image = collection.first()
|
490 |
-
# default_scale = first_image.projection().nominalScale().getInfo()
|
491 |
-
# band_names = first_image.bandNames().getInfo()
|
492 |
-
# data = {
|
493 |
-
# f"Custom Dataset: {custom_dataset_id}": {
|
494 |
-
# "sub_options": {custom_dataset_id: f"Custom Dataset ({custom_dataset_id})"},
|
495 |
-
# "bands": {custom_dataset_id: band_names}
|
496 |
-
# }
|
497 |
-
# }
|
498 |
-
# st.write(f"Fetched bands for {custom_dataset_id}: {', '.join(band_names)}")
|
499 |
-
# st.write(f"Default Scale for Dataset: {default_scale} meters")
|
500 |
-
# except Exception as e:
|
501 |
-
# st.error(f"Error fetching dataset: {str(e)}. Please check the dataset ID and ensure it's valid in Google Earth Engine.")
|
502 |
-
# data = {}
|
503 |
-
# else:
|
504 |
-
# st.warning("Please enter a custom dataset ID to proceed.")
|
505 |
-
# data = {}
|
506 |
-
# if not data:
|
507 |
-
# st.error("No valid dataset available. Please check your inputs.")
|
508 |
-
# st.stop()
|
509 |
-
|
510 |
-
# st.markdown("<hr><h5><b>{}</b></h5>".format(imagery_base), unsafe_allow_html=True)
|
511 |
-
# main_selection = st.selectbox(f"Select {imagery_base} Dataset Category", list(data.keys()))
|
512 |
-
# sub_selection = None
|
513 |
-
# dataset_id = None
|
514 |
-
# if main_selection:
|
515 |
-
# sub_options = data[main_selection]["sub_options"]
|
516 |
-
# sub_selection = st.selectbox(f"Select Specific {imagery_base} Dataset ID", list(sub_options.keys()))
|
517 |
-
# if sub_selection:
|
518 |
-
# st.write(f"You selected: {main_selection} -> {sub_options[sub_selection]}")
|
519 |
-
# st.write(f"Dataset ID: {sub_selection}")
|
520 |
-
# dataset_id = sub_selection
|
521 |
-
|
522 |
-
# # Fetch the default scale for the selected dataset
|
523 |
-
# try:
|
524 |
-
# collection = ee.ImageCollection(dataset_id)
|
525 |
-
# first_image = collection.first()
|
526 |
-
# # Select the first band to avoid issues with multiple projections
|
527 |
-
# default_scale = first_image.select(0).projection().nominalScale().getInfo()
|
528 |
-
# st.write(f"Default Scale for Selected Dataset: {default_scale} meters")
|
529 |
-
# except Exception as e:
|
530 |
-
# st.error(f"Error fetching default scale: {str(e)}")
|
531 |
-
|
532 |
-
# st.markdown("<hr><h5><b>Earth Engine Index Calculator</b></h5>", unsafe_allow_html=True)
|
533 |
-
# if main_selection and sub_selection:
|
534 |
-
# dataset_bands = data[main_selection]["bands"].get(sub_selection, [])
|
535 |
-
# st.write(f"Available Bands for {sub_options[sub_selection]}: {', '.join(dataset_bands)}")
|
536 |
-
# selected_bands = st.multiselect(
|
537 |
-
# "Select 1 or 2 Bands for Calculation",
|
538 |
-
# options=dataset_bands,
|
539 |
-
# default=[dataset_bands[0]] if dataset_bands else [],
|
540 |
-
# help=f"Select 1 or 2 bands from: {', '.join(dataset_bands)}"
|
541 |
-
# )
|
542 |
-
# if len(selected_bands) < 1:
|
543 |
-
# st.warning("Please select at least one band.")
|
544 |
-
# st.stop()
|
545 |
-
# if selected_bands:
|
546 |
-
# if len(selected_bands) == 1:
|
547 |
-
# default_formula = f"{selected_bands[0]}"
|
548 |
-
# example = f"'{selected_bands[0]} * 2' or '{selected_bands[0]} + 1'"
|
549 |
-
# else:
|
550 |
-
# default_formula = f"({selected_bands[0]} - {selected_bands[1]}) / ({selected_bands[0]} + {selected_bands[1]})"
|
551 |
-
# example = f"'{selected_bands[0]} * {selected_bands[1]} / 2' or '({selected_bands[0]} - {selected_bands[1]}) / ({selected_bands[0]} + {selected_bands[1]})'"
|
552 |
-
# custom_formula = st.text_input(
|
553 |
-
# "Enter Custom Formula (e.g (B8 - B4) / (B8 + B4) , B4*B3/2)",
|
554 |
-
# value=default_formula,
|
555 |
-
# help=f"Use only these bands: {', '.join(selected_bands)}. Examples: {example}"
|
556 |
-
# )
|
557 |
-
# def validate_formula(formula, selected_bands):
|
558 |
-
# allowed_chars = set(" +-*/()0123456789.")
|
559 |
-
# terms = re.findall(r'[a-zA-Z][a-zA-Z0-9_]*', formula)
|
560 |
-
# invalid_terms = [term for term in terms if term not in selected_bands]
|
561 |
-
# if invalid_terms:
|
562 |
-
# return False, f"Invalid terms in formula: {', '.join(invalid_terms)}. Use only {', '.join(selected_bands)}."
|
563 |
-
# if not all(char in allowed_chars or char in ''.join(selected_bands) for char in formula):
|
564 |
-
# return False, "Formula contains invalid characters. Use only bands, numbers, and operators (+, -, *, /, ())"
|
565 |
-
# return True, ""
|
566 |
-
# is_valid, error_message = validate_formula(custom_formula, selected_bands)
|
567 |
-
# if not is_valid:
|
568 |
-
# st.error(error_message)
|
569 |
-
# st.stop()
|
570 |
-
# elif not custom_formula:
|
571 |
-
# st.warning("Please enter a custom formula to proceed.")
|
572 |
-
# st.stop()
|
573 |
-
# st.write(f"Custom Formula: {custom_formula}")
|
574 |
-
|
575 |
-
# reducer_choice = st.selectbox(
|
576 |
-
# "Select Reducer (e.g, mean , sum , median , min , max , count)",
|
577 |
-
# ['mean', 'sum', 'median', 'min', 'max', 'count'],
|
578 |
-
# index=0
|
579 |
-
# )
|
580 |
-
# start_date = st.date_input("Start Date", value=pd.to_datetime('2024-11-01'))
|
581 |
-
# end_date = st.date_input("End Date", value=pd.to_datetime('2024-12-01'))
|
582 |
-
# start_date_str = start_date.strftime('%Y-%m-%d')
|
583 |
-
# end_date_str = end_date.strftime('%Y-%m-%d')
|
584 |
-
# if imagery_base == "Sentinel" and "Sentinel-2" in sub_options[sub_selection]:
|
585 |
-
# st.markdown("<h5>Cloud Filtering</h5>", unsafe_allow_html=True)
|
586 |
-
# tile_cloud_threshold = st.slider(
|
587 |
-
# "Select Maximum Tile-Based Cloud Coverage Threshold (%)",
|
588 |
-
# min_value=0,
|
589 |
-
# max_value=100,
|
590 |
-
# value=20,
|
591 |
-
# step=5,
|
592 |
-
# help="Tiles with cloud coverage exceeding this threshold will be excluded."
|
593 |
-
# )
|
594 |
-
# pixel_cloud_threshold = st.slider(
|
595 |
-
# "Select Maximum Pixel-Based Cloud Coverage Threshold (%)",
|
596 |
-
# min_value=0,
|
597 |
-
# max_value=100,
|
598 |
-
# value=10,
|
599 |
-
# step=5,
|
600 |
-
# help="Individual pixels with cloud coverage exceeding this threshold will be masked."
|
601 |
-
# )
|
602 |
-
# aggregation_period = st.selectbox(
|
603 |
-
# "Select Aggregation Period (e.g, Custom(Start Date to End Date) , Daily , Weekly , Monthly , Yearly)",
|
604 |
-
# ["Custom (Start Date to End Date)", "Daily", "Weekly", "Monthly", "Yearly"],
|
605 |
-
# index=0
|
606 |
-
# )
|
607 |
-
# shape_type = st.selectbox("Do you want to process 'Point' or 'Polygon' data?", ["Point", "Polygon"])
|
608 |
-
# kernel_size = None
|
609 |
-
# include_boundary = None
|
610 |
-
# if shape_type.lower() == "point":
|
611 |
-
# kernel_size = st.selectbox(
|
612 |
-
# "Select Calculation Area(e.g, Point , 3x3 Kernel , 5x5 Kernel)",
|
613 |
-
# ["Point", "3x3 Kernel", "5x5 Kernel"],
|
614 |
-
# index=0,
|
615 |
-
# help="Choose 'Point' for exact point calculation, or a kernel size for area averaging."
|
616 |
-
# )
|
617 |
-
# elif shape_type.lower() == "polygon":
|
618 |
-
# include_boundary = st.checkbox(
|
619 |
-
# "Include Boundary Pixels",
|
620 |
-
# value=True,
|
621 |
-
# help="Check to include pixels on the polygon boundary; uncheck to exclude them."
|
622 |
-
# )
|
623 |
-
# st.markdown("<h5>Calculation Scale</h5>", unsafe_allow_html=True)
|
624 |
-
# default_scale = ee.ImageCollection(dataset_id).first().select(0).projection().nominalScale().getInfo()
|
625 |
-
# user_scale = st.number_input(
|
626 |
-
# "Enter Calculation Scale (meters) [Leave blank to use dataset's default scale]",
|
627 |
-
# min_value=1.0,
|
628 |
-
# value=float(default_scale),
|
629 |
-
# help=f"Default scale for this dataset is {default_scale} meters. Adjust if needed."
|
630 |
-
# )
|
631 |
-
|
632 |
-
# file_upload = st.file_uploader(f"Upload your {shape_type} data (CSV, GeoJSON, KML)", type=["csv", "geojson", "kml"])
|
633 |
-
# locations_df = pd.DataFrame()
|
634 |
-
# original_lat_col = None
|
635 |
-
# original_lon_col = None
|
636 |
-
# if file_upload is not None:
|
637 |
-
# if shape_type.lower() == "point":
|
638 |
-
# if file_upload.name.endswith('.csv'):
|
639 |
-
# locations_df = pd.read_csv(file_upload)
|
640 |
-
# st.write("Preview of your uploaded data (first 5 rows):")
|
641 |
-
# st.dataframe(locations_df.head())
|
642 |
-
# all_columns = locations_df.columns.tolist()
|
643 |
-
# col1, col2 = st.columns(2)
|
644 |
-
# with col1:
|
645 |
-
# original_lat_col = st.selectbox(
|
646 |
-
# "Select Latitude Column",
|
647 |
-
# options=all_columns,
|
648 |
-
# index=all_columns.index('latitude') if 'latitude' in all_columns else 0,
|
649 |
-
# help="Select the column containing latitude values"
|
650 |
-
# )
|
651 |
-
# with col2:
|
652 |
-
# original_lon_col = st.selectbox(
|
653 |
-
# "Select Longitude Column",
|
654 |
-
# options=all_columns,
|
655 |
-
# index=all_columns.index('longitude') if 'longitude' in all_columns else 0,
|
656 |
-
# help="Select the column containing longitude values"
|
657 |
-
# )
|
658 |
-
# if not pd.api.types.is_numeric_dtype(locations_df[original_lat_col]) or not pd.api.types.is_numeric_dtype(locations_df[original_lon_col]):
|
659 |
-
# st.error("Error: Selected Latitude and Longitude columns must contain numeric values")
|
660 |
-
# st.stop()
|
661 |
-
# locations_df = locations_df.rename(columns={
|
662 |
-
# original_lat_col: 'latitude',
|
663 |
-
# original_lon_col: 'longitude'
|
664 |
-
# })
|
665 |
-
# elif file_upload.name.endswith('.geojson'):
|
666 |
-
# locations_df = gpd.read_file(file_upload)
|
667 |
-
# if 'geometry' in locations_df.columns:
|
668 |
-
# locations_df['latitude'] = locations_df['geometry'].y
|
669 |
-
# locations_df['longitude'] = locations_df['geometry'].x
|
670 |
-
# original_lat_col = 'latitude'
|
671 |
-
# original_lon_col = 'longitude'
|
672 |
-
# else:
|
673 |
-
# st.error("GeoJSON file doesn't contain geometry column")
|
674 |
-
# st.stop()
|
675 |
-
# elif file_upload.name.endswith('.kml'):
|
676 |
-
# kml_string = file_upload.read().decode('utf-8')
|
677 |
-
# try:
|
678 |
-
# root = XET.fromstring(kml_string)
|
679 |
-
# ns = {'kml': 'http://www.opengis.net/kml/2.2'}
|
680 |
-
# points = []
|
681 |
-
# for placemark in root.findall('.//kml:Placemark', ns):
|
682 |
-
# name = placemark.findtext('kml:name', default=f"Point_{len(points)}", namespaces=ns)
|
683 |
-
# coords_elem = placemark.find('.//kml:Point/kml:coordinates', ns)
|
684 |
-
# if coords_elem is not None:
|
685 |
-
# coords_text = coords_elem.text.strip()
|
686 |
-
# coords = [c.strip() for c in coords_text.split(',')]
|
687 |
-
# if len(coords) >= 2:
|
688 |
-
# lon, lat = float(coords[0]), float(coords[1])
|
689 |
-
# points.append({'name': name, 'geometry': f"POINT ({lon} {lat})"})
|
690 |
-
# if not points:
|
691 |
-
# st.error("No valid Point data found in the KML file.")
|
692 |
-
# else:
|
693 |
-
# locations_df = gpd.GeoDataFrame(points, geometry=gpd.GeoSeries.from_wkt([p['geometry'] for p in points]), crs="EPSG:4326")
|
694 |
-
# locations_df['latitude'] = locations_df['geometry'].y
|
695 |
-
# locations_df['longitude'] = locations_df['geometry'].x
|
696 |
-
# original_lat_col = 'latitude'
|
697 |
-
# original_lon_col = 'longitude'
|
698 |
-
# except Exception as e:
|
699 |
-
# st.error(f"Error parsing KML file: {str(e)}")
|
700 |
-
# if not locations_df.empty and 'latitude' in locations_df.columns and 'longitude' in locations_df.columns:
|
701 |
-
# m = leafmap.Map(center=[locations_df['latitude'].mean(), locations_df['longitude'].mean()], zoom=10)
|
702 |
-
# for _, row in locations_df.iterrows():
|
703 |
-
# latitude = row['latitude']
|
704 |
-
# longitude = row['longitude']
|
705 |
-
# if pd.isna(latitude) or pd.isna(longitude):
|
706 |
-
# continue
|
707 |
-
# m.add_marker(location=[latitude, longitude], popup=row.get('name', 'No Name'))
|
708 |
-
# st.write("Map of Uploaded Points:")
|
709 |
-
# m.to_streamlit()
|
710 |
-
# elif shape_type.lower() == "polygon":
|
711 |
-
# if file_upload.name.endswith('.csv'):
|
712 |
-
# st.error("CSV upload not supported for polygons. Please upload a GeoJSON or KML file.")
|
713 |
-
# elif file_upload.name.endswith('.geojson'):
|
714 |
-
# locations_df = gpd.read_file(file_upload)
|
715 |
-
# if 'geometry' not in locations_df.columns:
|
716 |
-
# st.error("GeoJSON file doesn't contain geometry column")
|
717 |
-
# st.stop()
|
718 |
-
# elif file_upload.name.endswith('.kml'):
|
719 |
-
# kml_string = file_upload.read().decode('utf-8')
|
720 |
-
# try:
|
721 |
-
# root = XET.fromstring(kml_string)
|
722 |
-
# ns = {'kml': 'http://www.opengis.net/kml/2.2'}
|
723 |
-
# polygons = []
|
724 |
-
# for placemark in root.findall('.//kml:Placemark', ns):
|
725 |
-
# name = placemark.findtext('kml:name', default=f"Polygon_{len(polygons)}", namespaces=ns)
|
726 |
-
# coords_elem = placemark.find('.//kml:Polygon//kml:coordinates', ns)
|
727 |
-
# if coords_elem is not None:
|
728 |
-
# coords_text = ' '.join(coords_elem.text.split())
|
729 |
-
# coord_pairs = [pair.split(',')[:2] for pair in coords_text.split() if pair]
|
730 |
-
# if len(coord_pairs) >= 4:
|
731 |
-
# coords_str = " ".join([f"{float(lon)} {float(lat)}" for lon, lat in coord_pairs])
|
732 |
-
# polygons.append({'name': name, 'geometry': f"POLYGON (({coords_str}))"})
|
733 |
-
# if not polygons:
|
734 |
-
# st.error("No valid Polygon data found in the KML file.")
|
735 |
-
# else:
|
736 |
-
# locations_df = gpd.GeoDataFrame(polygons, geometry=gpd.GeoSeries.from_wkt([p['geometry'] for p in polygons]), crs="EPSG:4326")
|
737 |
-
# except Exception as e:
|
738 |
-
# st.error(f"Error parsing KML file: {str(e)}")
|
739 |
-
# if not locations_df.empty and 'geometry' in locations_df.columns:
|
740 |
-
# centroid_lat = locations_df.geometry.centroid.y.mean()
|
741 |
-
# centroid_lon = locations_df.geometry.centroid.x.mean()
|
742 |
-
# m = leafmap.Map(center=[centroid_lat, centroid_lon], zoom=10)
|
743 |
-
# for _, row in locations_df.iterrows():
|
744 |
-
# polygon = row['geometry']
|
745 |
-
# if polygon.is_valid:
|
746 |
-
# gdf = gpd.GeoDataFrame([row], geometry=[polygon], crs=locations_df.crs)
|
747 |
-
# m.add_gdf(gdf=gdf, layer_name=row.get('name', 'Unnamed Polygon'))
|
748 |
-
# st.write("Map of Uploaded Polygons:")
|
749 |
-
# m.to_streamlit()
|
750 |
-
|
751 |
-
# if st.button(f"Calculate {custom_formula}"):
|
752 |
-
# if not locations_df.empty:
|
753 |
-
# with st.spinner("Processing Data..."):
|
754 |
-
# try:
|
755 |
-
# # Call the aggregation function with updated parameters
|
756 |
-
# results, processing_time = process_aggregation(
|
757 |
-
# locations_df,
|
758 |
-
# start_date_str,
|
759 |
-
# end_date_str,
|
760 |
-
# dataset_id,
|
761 |
-
# selected_bands,
|
762 |
-
# reducer_choice,
|
763 |
-
# shape_type,
|
764 |
-
# aggregation_period,
|
765 |
-
# original_lat_col,
|
766 |
-
# original_lon_col,
|
767 |
-
# custom_formula=custom_formula,
|
768 |
-
# kernel_size=kernel_size,
|
769 |
-
# include_boundary=include_boundary,
|
770 |
-
# tile_cloud_threshold=tile_cloud_threshold if "tile_cloud_threshold" in locals() else 0,
|
771 |
-
# pixel_cloud_threshold=pixel_cloud_threshold if "pixel_cloud_threshold" in locals() else 0,
|
772 |
-
# user_scale=user_scale
|
773 |
-
# )
|
774 |
-
|
775 |
-
# # Process and display results
|
776 |
-
# if results:
|
777 |
-
# result_df = pd.DataFrame(results)
|
778 |
-
# st.write(f"Processed Results Table ({aggregation_period}) for Formula: {custom_formula}")
|
779 |
-
# st.dataframe(result_df)
|
780 |
-
|
781 |
-
# # Download button for CSV
|
782 |
-
# filename = f"{main_selection}_{dataset_id}_{start_date.strftime('%Y%m%d')}_{end_date.strftime('%Y%m%d')}_{aggregation_period.lower()}.csv"
|
783 |
-
# st.download_button(
|
784 |
-
# label="Download results as CSV",
|
785 |
-
# data=result_df.to_csv(index=False).encode('utf-8'),
|
786 |
-
# file_name=filename,
|
787 |
-
# mime='text/csv'
|
788 |
-
# )
|
789 |
-
|
790 |
-
# # Success message
|
791 |
-
# st.success(f"Processing complete! Total processing time: {processing_time:.2f} seconds.")
|
792 |
-
|
793 |
-
# # Graph Visualization Section
|
794 |
-
# st.markdown("<h5>Graph Visualization</h5>", unsafe_allow_html=True)
|
795 |
-
|
796 |
-
# # Dynamically identify the time column
|
797 |
-
# if aggregation_period.lower() == 'custom (start date to end date)':
|
798 |
-
# x_column = 'Date Range'
|
799 |
-
# elif 'Date' in result_df.columns:
|
800 |
-
# x_column = 'Date'
|
801 |
-
# elif 'Week' in result_df.columns:
|
802 |
-
# x_column = 'Week'
|
803 |
-
# elif 'Month' in result_df.columns:
|
804 |
-
# x_column = 'Month'
|
805 |
-
# elif 'Year' in result_df.columns:
|
806 |
-
# x_column = 'Year'
|
807 |
-
# else:
|
808 |
-
# st.warning("No valid time column found for plotting.")
|
809 |
-
# st.stop()
|
810 |
-
|
811 |
-
# # Dynamically identify the value column
|
812 |
-
# y_column = None
|
813 |
-
# if 'Calculated Value' in result_df.columns:
|
814 |
-
# y_column = 'Calculated Value'
|
815 |
-
# elif 'Aggregated Value' in result_df.columns:
|
816 |
-
# y_column = 'Aggregated Value'
|
817 |
-
# else:
|
818 |
-
# st.warning("No value column found for plotting. Available columns: " + ", ".join(result_df.columns))
|
819 |
-
# st.stop()
|
820 |
-
|
821 |
-
# # Ensure we have valid data to plot
|
822 |
-
# if result_df.empty:
|
823 |
-
# st.warning("No data available for plotting.")
|
824 |
-
# st.stop()
|
825 |
-
|
826 |
-
# # # Line Chart
|
827 |
-
# # try:
|
828 |
-
# # st.subheader("Line Chart")
|
829 |
-
# # if x_column == 'Location Name':
|
830 |
-
# # st.line_chart(result_df.set_index(x_column)[y_column])
|
831 |
-
# # else:
|
832 |
-
# # # Convert to datetime for better sorting
|
833 |
-
# # result_df[x_column] = pd.to_datetime(result_df[x_column], errors='ignore')
|
834 |
-
# # result_df = result_df.sort_values(x_column)
|
835 |
-
# # st.line_chart(result_df.set_index(x_column)[y_column])
|
836 |
-
# # except Exception as e:
|
837 |
-
# # st.error(f"Error creating line chart: {str(e)}")
|
838 |
-
|
839 |
-
# # # Bar Chart
|
840 |
-
# # try:
|
841 |
-
# # st.subheader("Bar Chart")
|
842 |
-
# # if x_column == 'Location Name':
|
843 |
-
# # st.bar_chart(result_df.set_index(x_column)[y_column])
|
844 |
-
# # else:
|
845 |
-
# # result_df[x_column] = pd.to_datetime(result_df[x_column], errors='ignore')
|
846 |
-
# # result_df = result_df.sort_values(x_column)
|
847 |
-
# # st.bar_chart(result_df.set_index(x_column)[y_column])
|
848 |
-
# # except Exception as e:
|
849 |
-
# # st.error(f"Error creating bar chart: {str(e)}")
|
850 |
-
|
851 |
-
# # Advanced Plot (Plotly)
|
852 |
-
# try:
|
853 |
-
# st.subheader("Advanced Interactive Plot (Plotly)")
|
854 |
-
# if x_column == 'Location Name':
|
855 |
-
# fig = px.bar(
|
856 |
-
# result_df,
|
857 |
-
# x=x_column,
|
858 |
-
# y=y_column,
|
859 |
-
# color='Location Name',
|
860 |
-
# title=f"{custom_formula} by Location"
|
861 |
-
# )
|
862 |
-
# else:
|
863 |
-
# fig = px.line(
|
864 |
-
# result_df,
|
865 |
-
# x=x_column,
|
866 |
-
# y=y_column,
|
867 |
-
# color='Location Name',
|
868 |
-
# title=f"{custom_formula} Over Time"
|
869 |
-
# )
|
870 |
-
# st.plotly_chart(fig)
|
871 |
-
# except Exception as e:
|
872 |
-
# st.error(f"Error creating interactive plot: {str(e)}")
|
873 |
-
|
874 |
-
# else:
|
875 |
-
# st.warning("No results were generated. Check your inputs or formula.")
|
876 |
-
# st.info(f"Total processing time: {processing_time:.2f} seconds.")
|
877 |
-
|
878 |
-
# except Exception as e:
|
879 |
-
# st.error(f"An error occurred during processing: {str(e)}")
|
880 |
-
# else:
|
881 |
-
# st.warning("Please upload a valid file to proceed.")
|
882 |
-
# # if st.button(f"Calculate {custom_formula}"):
|
883 |
-
# # if not locations_df.empty:
|
884 |
-
# # with st.spinner("Processing Data..."):
|
885 |
-
# # try:
|
886 |
-
# # results, processing_time = process_aggregation(
|
887 |
-
# # locations_df,
|
888 |
-
# # start_date_str,
|
889 |
-
# # end_date_str,
|
890 |
-
# # dataset_id,
|
891 |
-
# # selected_bands,
|
892 |
-
# # reducer_choice,
|
893 |
-
# # shape_type,
|
894 |
-
# # aggregation_period,
|
895 |
-
# # original_lat_col,
|
896 |
-
# # original_lon_col,
|
897 |
-
# # custom_formula,
|
898 |
-
# # kernel_size,
|
899 |
-
# # include_boundary,
|
900 |
-
# # tile_cloud_threshold=tile_cloud_threshold if "tile_cloud_threshold" in locals() else 0,
|
901 |
-
# # pixel_cloud_threshold=pixel_cloud_threshold if "pixel_cloud_threshold" in locals() else 0,
|
902 |
-
# # user_scale=user_scale
|
903 |
-
# # )
|
904 |
-
# # if results:
|
905 |
-
# # result_df = pd.DataFrame(results)
|
906 |
-
# # st.write(f"Processed Results Table ({aggregation_period}) for Formula: {custom_formula}")
|
907 |
-
# # st.dataframe(result_df)
|
908 |
-
# # filename = f"{main_selection}_{dataset_id}_{start_date.strftime('%Y%m%d')}_{end_date.strftime('%Y%m%d')}_{aggregation_period.lower()}.csv"
|
909 |
-
# # st.download_button(
|
910 |
-
# # label="Download results as CSV",
|
911 |
-
# # data=result_df.to_csv(index=False).encode('utf-8'),
|
912 |
-
# # file_name=filename,
|
913 |
-
# # mime='text/csv'
|
914 |
-
# # )
|
915 |
-
# # st.success(f"Processing complete! Total processing time: {processing_time:.2f} seconds.")
|
916 |
-
# # st.markdown("<h5>Graph Visualization</h5>", unsafe_allow_html=True)
|
917 |
-
# # if aggregation_period.lower() == 'custom (start date to end date)':
|
918 |
-
# # x_column = 'Date Range'
|
919 |
-
# # elif 'Date' in result_df.columns:
|
920 |
-
# # x_column = 'Date'
|
921 |
-
# # elif 'Week' in result_df.columns:
|
922 |
-
# # x_column = 'Week'
|
923 |
-
# # elif 'Month' in result_df.columns:
|
924 |
-
# # x_column = 'Month'
|
925 |
-
# # elif 'Year' in result_df.columns:
|
926 |
-
# # x_column = 'Year'
|
927 |
-
# # else:
|
928 |
-
# # st.warning("No valid time column found for plotting.")
|
929 |
-
# # st.stop()
|
930 |
-
# # y_column = 'Calculated Value'
|
931 |
-
# # fig = px.line(
|
932 |
-
# # result_df,
|
933 |
-
# # x=x_column,
|
934 |
-
# # y=y_column,
|
935 |
-
# # color='Location Name',
|
936 |
-
# # title=f"{custom_formula} Over Time"
|
937 |
-
# # )
|
938 |
-
# # st.plotly_chart(fig)
|
939 |
-
# # else:
|
940 |
-
# # st.warning("No results were generated. Check your inputs or formula.")
|
941 |
-
# # st.info(f"Total processing time: {processing_time:.2f} seconds.")
|
942 |
-
# # except Exception as e:
|
943 |
-
# # st.error(f"An error occurred during processing: {str(e)}")
|
944 |
-
# # else:
|
945 |
-
# # st.warning("Please upload a valid file to proceed.")
|
946 |
|
947 |
import streamlit as st
|
948 |
import json
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
2 |
import streamlit as st
|
3 |
import json
|