File size: 4,957 Bytes
2eacd80
 
 
 
 
 
 
 
 
 
 
aae829f
2eacd80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39561ce
 
 
1a8dedb
39561ce
 
aae829f
1129545
 
2eacd80
81d721d
2eacd80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81d721d
2eacd80
81d721d
 
2eacd80
 
 
 
 
 
 
 
 
 
81d721d
2eacd80
81d721d
 
2eacd80
 
 
 
 
 
81d721d
2eacd80
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import time
import spaces
import torch

import gradio as gr
import yt_dlp as youtube_dl
from transformers import pipeline, MarianMTModel, MarianTokenizer
from transformers.pipelines.audio_utils import ffmpeg_read

import tempfile
import os
from safetensors import safe_open

MODEL_NAME = "openai/whisper-large-v3-turbo"
BATCH_SIZE = 8
FILE_LIMIT_MB = 1000
YT_LENGTH_LIMIT_S = 3600  # limit to 1 hour YouTube files

device = 0 if torch.cuda.is_available() else "cpu"

pipe = pipeline(
    task="automatic-speech-recognition",
    model=MODEL_NAME,
    chunk_length_s=30,
    device=device,
)

model_name_translate = "Helsinki-NLP/opus-mt-en-ar"
model_path_translate = "./lora-opus-mt-en-ar"
tensors = {}

with safe_open("model.safetensors", framework="pt") as f:
    for k in f.keys():
        tensors[k] = f.get_tensor(k)

tokenizer_translation = MarianTokenizer.from_pretrained(model_path_translate)
model_translate = MarianMTModel.from_pretrained(model_name_translate, state_dict=tensors, config="lora-opus-mt-en-ar/config.json")

@spaces.GPU
def translate(sentence):
    batch = tokenizer_translation([sentence], return_tensors="pt")
    generated_ids = model_translate.generate(batch["input_ids"])
    text  = tokenizer_translation.batch_decode(generated_ids, skip_special_tokens=True)[0]
    return text

@spaces.GPU
def transcribe(inputs, task):
    if inputs is None:
        raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")

    text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
    text = translate(text)
    return text


def _return_yt_html_embed(yt_url):
    video_id = yt_url.split("?v=")[-1]
    HTML_str = (
        f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
        " </center>"
    )
    return HTML_str

def download_yt_audio(yt_url, filename):
    info_loader = youtube_dl.YoutubeDL()
    
    try:
        info = info_loader.extract_info(yt_url, download=False)
    except youtube_dl.utils.DownloadError as err:
        raise gr.Error(str(err))
    
    file_length = info["duration_string"]
    file_h_m_s = file_length.split(":")
    file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
    
    if len(file_h_m_s) == 1:
        file_h_m_s.insert(0, 0)
    if len(file_h_m_s) == 2:
        file_h_m_s.insert(0, 0)
    file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
    
    if file_length_s > YT_LENGTH_LIMIT_S:
        yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
        file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
        raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
    
    ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
    
    with youtube_dl.YoutubeDL(ydl_opts) as ydl:
        try:
            ydl.download([yt_url])
        except youtube_dl.utils.ExtractorError as err:
            raise gr.Error(str(err))

@spaces.GPU
def yt_transcribe(yt_url, task, max_filesize=75.0):
    html_embed_str = _return_yt_html_embed(yt_url)

    with tempfile.TemporaryDirectory() as tmpdirname:
        filepath = os.path.join(tmpdirname, "video.mp4")
        download_yt_audio(yt_url, filepath)
        with open(filepath, "rb") as f:
            inputs = f.read()

    inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
    inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}

    text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
    text = translate(text)
    return html_embed_str, text


demo = gr.Blocks(theme=gr.themes.Ocean())

mf_transcribe = gr.Interface(
    fn=transcribe,
    inputs=[
        gr.Audio(sources="microphone", type="filepath"),
    ],
    outputs="text",
    title="Real-Time Speech Translation From English to Arabic",
    description=(
        "Real Time Speech Translation Model from English to Arabic. This model uses the Whisper For speech to generation"
        "then Helensiki model fine tuned on a translation dataset for translation"
    ),
    allow_flagging="never",
)

file_transcribe = gr.Interface(
    fn=transcribe,
    inputs=[
        gr.Audio(sources="upload", type="filepath", label="Audio file"),
    ],
    outputs="text",
    title="Real-Time Speech Translation From English to Arabic",
    description=(
        "Real Time Speech Translation Model from English to Arabic. This model uses the Whisper For speech to generation"
        "then Helensiki model fine tuned on a translation dataset for translation"
    ),
    allow_flagging="never",
)


with demo:
    gr.TabbedInterface([mf_transcribe, file_transcribe], ["Microphone", "Audio file"])

demo.queue().launch(ssr_mode=False)