vibesNature / app.py
Ahmadkhan12's picture
Update app.py
85ec17d verified
# Import libraries
import os
import gradio as gr
import torch
import soundfile as sf
import numpy as np
from PIL import Image
import torch.nn.functional as F
import logging
from scipy.io.wavfile import write as write_wav
from scipy import signal
from moviepy.editor import VideoFileClip, AudioFileClip
import requests
from audiocraft.models import AudioGen, MusicGen # Use audiocraft for AudioGen and MusicGen
# Set up logging for better debug tracking
logging.basicConfig(level=logging.DEBUG, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger()
# Download Places365 class labels
try:
logging.info("Downloading Places365 class labels...")
url = "http://places2.csail.mit.edu/models_places365/categories_places365.txt"
response = requests.get(url)
with open("categories_places365.txt", "wb") as f:
f.write(response.content)
logging.info("Places365 class labels downloaded successfully.")
except Exception as e:
logging.error(f"Error downloading Places365 class labels: {e}")
raise
# Load Places365 model for scene detection (on CPU to save GPU memory)
try:
logging.info("Loading Places365 model for scene detection...")
places365 = torch.hub.load('pytorch/vision:v0.10.0', 'resnet18', pretrained=True)
places365.eval()
places365.to("cpu") # Move to CPU
logging.info("Places365 model loaded successfully.")
except Exception as e:
logging.error(f"Error loading Places365 model: {e}")
raise
# Load Places365 class labels
with open("categories_places365.txt", "r") as f:
SCENE_CLASSES = [line.strip().split(" ")[0][3:] for line in f.readlines()]
# Load AudioGen Medium and MusicGen Medium models
try:
logging.info("Loading AudioGen Medium and MusicGen Medium models...")
audiogen_model = AudioGen.get_pretrained("facebook/audiogen-medium")
musicgen_model = MusicGen.get_pretrained("facebook/musicgen-medium")
logging.info("AudioGen Medium and MusicGen Medium models loaded successfully.")
except Exception as e:
logging.error(f"Error loading AudioGen/MusicGen models: {e}")
raise
# Function to classify a frame using Places365
def classify_frame(frame):
try:
preprocess = transforms.Compose([
transforms.Resize(128), # Smaller resolution
transforms.CenterCrop(128),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
img = Image.fromarray(frame)
img = preprocess(img).unsqueeze(0)
with torch.no_grad():
output = places365(img.to("cpu")) # Ensure inference on CPU
probabilities = F.softmax(output, dim=1)
_, predicted = torch.max(probabilities, 1)
predicted_index = predicted.item()
# Ensure the predicted index is within the range of SCENE_CLASSES
if predicted_index >= len(SCENE_CLASSES) or predicted_index < 0:
logging.warning(f"Predicted class index {predicted_index} is out of range. Defaulting to 'nature'.")
return "nature" # Default scene type
scene_type = SCENE_CLASSES[predicted_index]
logging.info(f"Predicted scene: {scene_type}")
return scene_type
except Exception as e:
logging.error(f"Error classifying frame: {e}")
raise
# Function to analyze video content and return the scene type using Places365
def analyze_video(video_path):
try:
logging.info(f"Analyzing video: {video_path}")
clip = VideoFileClip(video_path)
frame = clip.get_frame(0) # Get the first frame
frame = Image.fromarray(frame) # Convert to PIL image
frame = np.array(frame.resize((128, 128))) # Resize to reduce memory usage
# Classify the frame using Places365
scene_type = classify_frame(frame)
logging.info(f"Scene type detected: {scene_type}")
return scene_type
except Exception as e:
logging.error(f"Error analyzing video: {e}")
raise
# Function to generate audio using AudioGen Medium
def generate_audio_audiogen(scene, duration=10):
try:
logging.info(f"Generating audio for scene: {scene} using AudioGen Medium...")
audiogen_model.set_generation_params(duration=duration)
descriptions = [f"Ambient sounds of {scene}"]
wav = audiogen_model.generate(descriptions) # Generate audio
audio_path = "generated_audio_audiogen.wav"
sf.write(audio_path, wav.squeeze().cpu().numpy(), 32000) # Save as WAV file
logging.info(f"Audio generated and saved to: {audio_path}")
return audio_path
except Exception as e:
logging.error(f"Error generating audio with AudioGen Medium: {e}")
raise
# Function to generate music using MusicGen Medium
def generate_music_musicgen(scene, duration=10):
try:
logging.info(f"Generating music for scene: {scene} using MusicGen Medium...")
musicgen_model.set_generation_params(duration=duration)
descriptions = [f"Calm music for {scene}"]
wav = musicgen_model.generate(descriptions) # Generate music
music_path = "generated_music_musicgen.wav"
sf.write(music_path, wav.squeeze().cpu().numpy(), 32000) # Save as WAV file
logging.info(f"Music generated and saved to: {music_path}")
return music_path
except Exception as e:
logging.error(f"Error generating music with MusicGen Medium: {e}")
raise
# Function to merge audio and video into a final video file using moviepy
def merge_audio_video(video_path, audio_path, output_path="output.mp4"):
try:
logging.info("Merging audio and video using moviepy...")
video_clip = VideoFileClip(video_path)
audio_clip = AudioFileClip(audio_path)
final_clip = video_clip.set_audio(audio_clip)
final_clip.write_videofile(output_path, codec="libx264", audio_codec="aac")
logging.info(f"Final video saved to: {output_path}")
return output_path
except Exception as e:
logging.error(f"Error merging audio and video: {e}")
return None
# Main processing function to handle video upload, scene analysis, and video output
def process_video(video_path, progress=gr.Progress()):
try:
progress(0.1, desc="Starting video processing...")
logging.info("Starting video processing...")
# Analyze the video to determine the scene type
progress(0.3, desc="Analyzing video...")
scene_type = analyze_video(video_path)
# Generate audio using AudioGen Medium
progress(0.5, desc="Generating audio...")
audio_path = generate_audio_audiogen(scene_type, duration=10)
# Generate music using MusicGen Medium
progress(0.7, desc="Generating music...")
music_path = generate_music_musicgen(scene_type, duration=10)
# Merge the generated audio with the video and output the final video
progress(0.9, desc="Merging audio and video...")
output_path = merge_audio_video(video_path, music_path)
if not output_path:
return "Error: Failed to merge audio and video.", "Logs: Merge failed."
logging.info("Video processing completed successfully.")
return output_path, "Logs: Processing completed."
except Exception as e:
logging.error(f"Error in process_video: {e}")
return f"An error occurred during processing: {e}", f"Logs: {e}"
# Gradio UI for video upload
def gradio_interface(video_file, progress=gr.Progress()):
try:
progress(0.1, desc="Starting video processing...")
logging.info("Gradio interface triggered.")
output_video, logs = process_video(video_file, progress)
return output_video, logs
except Exception as e:
logging.error(f"Error in Gradio interface: {e}")
return f"An error occurred: {e}", f"Logs: {e}"
# Launch Gradio app
try:
logging.info("Launching Gradio app...")
interface = gr.Interface(
fn=gradio_interface,
inputs=[gr.Video(label="Upload Video")],
outputs=[gr.Video(label="Output Video with Generated Audio"), gr.Textbox(label="Logs", lines=10)],
title="Video to Video with Generated Audio and Music",
description="Upload a video, and this app will analyze it and generate matching audio and music using AudioGen Medium and MusicGen Medium."
)
interface.queue() # Enable queue for long-running tasks
interface.launch(share=True) # Launch the app
except Exception as e:
logging.error(f"Error launching Gradio app: {e}")
raise