aaa / LLMatic-main /plot /plot_2d_map.py
Ahmed-Salah's picture
Upload 57 files
d625688 verified
#! /usr/bin/env python
#| This file is a part of the pymap_elites framework.
#| Copyright 2019, INRIA
#| Main contributor(s):
#| Jean-Baptiste Mouret, [email protected]
#| Eloise Dalin , [email protected]
#| Pierre Desreumaux , [email protected]
#|
#|
#| **Main paper**: Mouret JB, Clune J. Illuminating search spaces by
#| mapping elites. arXiv preprint arXiv:1504.04909. 2015 Apr 20.
#|
#| This software is governed by the CeCILL license under French law
#| and abiding by the rules of distribution of free software. You
#| can use, modify and/ or redistribute the software under the terms
#| of the CeCILL license as circulated by CEA, CNRS and INRIA at the
#| following URL "http://www.cecill.info".
#|
#| As a counterpart to the access to the source code and rights to
#| copy, modify and redistribute granted by the license, users are
#| provided only with a limited warranty and the software's author,
#| the holder of the economic rights, and the successive licensors
#| have only limited liability.
#|
#| In this respect, the user's attention is drawn to the risks
#| associated with loading, using, modifying and/or developing or
#| reproducing the software by the user in light of its specific
#| status of free software, that may mean that it is complicated to
#| manipulate, and that also therefore means that it is reserved for
#| developers and experienced professionals having in-depth computer
#| knowledge. Users are therefore encouraged to load and test the
#| software's suitability as regards their requirements in conditions
#| enabling the security of their systems and/or data to be ensured
#| and, more generally, to use and operate it in the same conditions
#| as regards security.
#|
#| The fact that you are presently reading this means that you have
#| had knowledge of the CeCILL license and that you accept its terms.
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
from scipy.spatial import Voronoi, voronoi_plot_2d
import sys
from matplotlib.ticker import FuncFormatter
from sklearn.neighbors import KDTree
import matplotlib.cm as cm
my_cmap = cm.viridis
def voronoi_finite_polygons_2d(vor, radius=None):
"""
Reconstruct infinite voronoi regions in a 2D diagram to finite
regions.
Source: https://stackoverflow.com/questions/20515554/colorize-voronoi-diagram/20678647#20678647
Parameters
----------
vor : Voronoi
Input diagram
radius : float, optional
Distance to 'points at infinity'.
Returns
-------
regions : list of tuples
Indices of vertices in each revised Voronoi regions.
vertices : list of tuples
Coordinates for revised Voronoi vertices. Same as coordinates
of input vertices, with 'points at infinity' appended to the
end.
"""
if vor.points.shape[1] != 2:
raise ValueError("Requires 2D input")
new_regions = []
new_vertices = vor.vertices.tolist()
center = vor.points.mean(axis=0)
if radius is None:
radius = vor.points.ptp().max()
# Construct a map containing all ridges for a given point
all_ridges = {}
for (p1, p2), (v1, v2) in zip(vor.ridge_points, vor.ridge_vertices):
all_ridges.setdefault(p1, []).append((p2, v1, v2))
all_ridges.setdefault(p2, []).append((p1, v1, v2))
# Reconstruct infinite regions
for p1, region in enumerate(vor.point_region):
vertices = vor.regions[region]
if all(v >= 0 for v in vertices):
# finite region
new_regions.append(vertices)
continue
# reconstruct a non-finite region
ridges = all_ridges[p1]
new_region = [v for v in vertices if v >= 0]
for p2, v1, v2 in ridges:
if v2 < 0:
v1, v2 = v2, v1
if v1 >= 0:
# finite ridge: already in the region
continue
# Compute the missing endpoint of an infinite ridge
t = vor.points[p2] - vor.points[p1] # tangent
t /= np.linalg.norm(t)
n = np.array([-t[1], t[0]]) # normal
midpoint = vor.points[[p1, p2]].mean(axis=0)
direction = np.sign(np.dot(midpoint - center, n)) * n
far_point = vor.vertices[v2] + direction * radius
new_region.append(len(new_vertices))
new_vertices.append(far_point.tolist())
# sort region counterclockwise
vs = np.asarray([new_vertices[v] for v in new_region])
c = vs.mean(axis=0)
angles = np.arctan2(vs[:,1] - c[1], vs[:,0] - c[0])
new_region = np.array(new_region)[np.argsort(angles)]
# finish
new_regions.append(new_region.tolist())
return new_regions, np.asarray(new_vertices)
def load_data(filename, dim,dim_x):
print("Loading ",filename)
data = np.loadtxt(filename)
fit = data[:, 0:1]
desc = data[:,1: dim+1]
x = data[:,dim+1:dim+1+dim_x]
return fit, desc, x
def load_centroids(filename):
points = np.loadtxt(filename)
return points
def plot_cvt(ax, centroids, fit, desc, x,dim1,dim2, min_fit, max_fit):
# compute Voronoi tesselation
print("Voronoi...")
vor = Voronoi(centroids[:,0:2])
regions, vertices = voronoi_finite_polygons_2d(vor)
print("fit:", min_fit, max_fit)
norm = matplotlib.colors.Normalize(vmin=min_fit, vmax=max_fit)
print("KD-Tree...")
kdt = KDTree(centroids, leaf_size = 30, metric = 'euclidean')
print("plotting contour...")
#ax.scatter(centroids[:, 0], centroids[:,1], c=fit)
# contours
for i, region in enumerate(regions):
polygon = vertices[region]
ax.fill(*zip(*polygon), alpha=0.05, edgecolor='black', facecolor='white', lw=1)
print("plotting data...")
k = 0
for i in range(0, len(desc)):
q = kdt.query([desc[i]], k = 1)
index = q[1][0][0]
region = regions[index]
polygon = vertices[region]
ax.fill(*zip(*polygon), alpha=0.9, color=my_cmap(norm(fit[i]))[0])
k += 1
if k % 100 == 0:
print(k, end=" ", flush=True)
fit_reshaped = fit.reshape((len(fit),))
sc = ax.scatter(desc[:,0], desc[:,1], c=fit_reshaped, cmap=my_cmap, s=10, zorder=0)
if __name__ == "__main__":
if len(sys.argv) < 3:
sys.exit('Usage: %s centroids_file archive.dat [min_fit] [max_fit]' % sys.argv[0])
centroids = load_centroids(sys.argv[1])
dim_x = 100
fit, beh, x = load_data(sys.argv[2], centroids.shape[1], dim_x)
print("Fitness max : ", max(fit))
index = np.argmax(fit)
print("Average fit:", fit.sum() / fit.shape[0])
print("Associated desc : " , beh[index] )
print("Associated ctrl : " , x[index] )
print("Index : ", index)
print("total len ",len(fit))
if len(sys.argv) > 3:
min_fit = float(sys.argv[3])
max_fit = float(sys.argv[4])
else:
min_fit = min(fit)
max_fit = max(fit)
print("Min = {} Max={}".format(min_fit, max_fit))
# Plot
fig, axes = plt.subplots(1, 1, figsize=(10, 10), facecolor='white', edgecolor='white')
axes.set_xlim(0, 1)
axes.set_ylim(0, 1)
plot_cvt(axes, centroids, fit, beh, x,2,4, min_fit, max_fit)
fig.savefig('cvt.pdf')
fig.savefig('cvt.png')