File size: 7,625 Bytes
8c4611d
 
 
 
 
 
 
 
 
 
 
a001ae3
 
 
 
908ca8a
 
 
 
 
 
a001ae3
 
 
 
 
 
 
 
 
 
 
739fc33
 
a001ae3
 
 
 
739fc33
 
 
 
 
 
 
9a41912
739fc33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a001ae3
8c4611d
908ca8a
 
 
 
 
 
 
 
 
 
8c4611d
 
 
 
 
 
739fc33
8c4611d
 
 
 
 
 
 
 
908ca8a
 
8c4611d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
908ca8a
 
 
 
a001ae3
be5bdad
a001ae3
 
908ca8a
 
8c4611d
908ca8a
 
8c4611d
 
 
 
 
 
908ca8a
 
 
 
 
 
 
8c4611d
 
a001ae3
908ca8a
9a41912
908ca8a
9ddd6da
8c4611d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import gradio as gr
import edge_tts
import asyncio
import tempfile
import numpy as np
import soxr
from pydub import AudioSegment
import torch
import sentencepiece as spm
import onnxruntime as ort
from huggingface_hub import hf_hub_download, InferenceClient
import requests
from bs4 import BeautifulSoup
import urllib
import random
from functools import lru_cache
import concurrent.futures

# Configuration for concurrency
MAX_WORKERS = 4  # Adjust based on your system resources
executor = concurrent.futures.ThreadPoolExecutor(max_workers=MAX_WORKERS)

def extract_text_from_webpage(html_content):
    """Extracts visible text from HTML content using BeautifulSoup."""
    soup = BeautifulSoup(html_content, "html.parser")
    # Remove unwanted tags
    for tag in soup(["script", "style", "header", "footer", "nav"]):
        tag.extract()
    # Get the remaining visible text
    visible_text = soup.get_text(strip=True)
    return visible_text

# Perform a Google search and return the results
def search(term, num_results=3, lang="en", advanced=True, timeout=5, safe="active", ssl_verify=None):
    """Performs a Google search and returns the results."""
    escaped_term = urllib.parse.quote_plus(term)
    start = 0
    all_results = []
    # Limit the number of characters from each webpage to stay under the token limit
    max_chars_per_page = 4000  # Adjust this value based on your token limit and average webpage length

    with requests.Session() as session:
        while start < num_results:
            resp = session.get(
                url="https://www.google.com/search",
                headers={"User-Agent":'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36 Edg/111.0.1661.62'},
                params={
                    "q": term,
                    "num": num_results - start,
                    "hl": lang,
                    "start": start,
                    "safe": safe,
                },
                timeout=timeout,
                verify=ssl_verify,
            )
            resp.raise_for_status()
            soup = BeautifulSoup(resp.text, "html.parser")
            result_block = soup.find_all("div", attrs={"class": "g"})
            if not result_block:
                start += 1
                continue
            for result in result_block:
                link = result.find("a", href=True)
                if link:
                    link = link["href"]
                    try:
                        webpage = session.get(link, headers={"User-Agent": get_useragent()})
                        webpage.raise_for_status()
                        visible_text = extract_text_from_webpage(webpage.text)
                        # Truncate text if it's too long
                        if len(visible_text) > max_chars_per_page:
                            visible_text = visible_text[:max_chars_per_page] + "..."
                        all_results.append({"link": link, "text": visible_text})
                    except requests.exceptions.RequestException as e:
                        print(f"Error fetching or processing {link}: {e}")
                        all_results.append({"link": link, "text": None})
                else:
                    all_results.append({"link": None, "text": None})
            start += len(result_block)
    return all_results

@lru_cache(maxsize=1)  # Cache the models to avoid reloading
def load_speech_recognition_models():
    """Loads and caches speech recognition models."""
    model_name = "neongeckocom/stt_en_citrinet_512_gamma_0_25"
    sample_rate = 16000
    preprocessor = torch.jit.load(hf_hub_download(model_name, "preprocessor.ts", subfolder="onnx"))
    encoder = ort.InferenceSession(hf_hub_download(model_name, "model.onnx", subfolder="onnx"))
    tokenizer = spm.SentencePieceProcessor(hf_hub_download(model_name, "tokenizer.spm", subfolder="onnx"))
    return preprocessor, encoder, tokenizer

# Speech Recognition Model Configuration
model_name = "neongeckocom/stt_en_citrinet_512_gamma_0_25"
sample_rate = 16000

# Mistral Model Configuration
client1 = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
system_instructions1 = "<s>[SYSTEM] Answer as Real OpenGPT 4o, Made by 'KingNish', Keep conversation very short, clear, friendly and concise. The text provided is a request for a specific type of response from you, the virtual assistant. The request asks you to provide friendly responses. The expectation is that I will avoid introductions and start answering the query directly, elaborating on all aspects of the request. As an AI-powered assistant, your task is to generate responses that appear as if they are created by the user and not an AI-powered assistant. [USER]"

def resample(audio_fp32, sr):
    return soxr.resample(audio_fp32, sr, sample_rate)

def to_float32(audio_buffer):
    return np.divide(audio_buffer, np.iinfo(audio_buffer.dtype).max, dtype=np.float32)

def transcribe(audio_path):
    """Transcribes audio using cached models."""
    preprocessor, encoder, tokenizer = load_speech_recognition_models()
    audio_file = AudioSegment.from_file(audio_path)
    sr = audio_file.frame_rate
    audio_buffer = np.array(audio_file.get_array_of_samples())

    audio_fp32 = to_float32(audio_buffer)
    audio_16k = resample(audio_fp32, sr)

    input_signal = torch.tensor(audio_16k).unsqueeze(0)
    length = torch.tensor(len(audio_16k)).unsqueeze(0)
    processed_signal, _ = preprocessor.forward(input_signal=input_signal, length=length)
    
    logits = encoder.run(None, {'audio_signal': processed_signal.numpy(), 'length': length.numpy()})[0][0]

    blank_id = tokenizer.vocab_size()
    decoded_prediction = [p for p in logits.argmax(axis=1).tolist() if p != blank_id]
    text = tokenizer.decode_ids(decoded_prediction)

    return text

async def run_model(text, web_search):
    """Runs the language model asynchronously."""
    if web_search:
        web_results = await asyncio.get_event_loop().run_in_executor(executor, search, text)  # Run search in executor
        web2 = ' '.join([f"Link: {res['link']}\nText: {res['text']}\n\n" for res in web_results])
        formatted_prompt = system_instructions1 + text + "[WEB]" + str(web2) + "[ANSWER]"
    else:
        formatted_prompt = system_instructions1 + text + "[JARVIS]"
    stream = client1.text_generation(formatted_prompt, max_new_tokens=512, stream=True, details=True, return_full_text=False)
    return "".join([response.token.text for response in stream if response.token.text != "</s>"])

async def generate_speech(reply):
    """Generates speech asynchronously."""
    communicate = edge_tts.Communicate(reply)
    with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
        tmp_path = tmp_file.name
        await communicate.save(tmp_path)
    return tmp_path

async def respond(audio, web_search):
    """Handles user input, model processing, and response generation."""
    user = await asyncio.get_event_loop().run_in_executor(executor, transcribe, audio)  # Run transcription in executor
    reply = await run_model(user, web_search)
    audio_path = await generate_speech(reply)
    return audio_path

with gr.Blocks() as demo:    
    with gr.Row():
        web_search = gr.Checkbox(label="Web Search", value=False)
        input = gr.Audio(label="Voice Chat", sources="microphone", type="numpy")
        output = gr.Audio(label="AI",autoplay=True)
        gr.Interface(fn=respond, inputs=[input, web_search], outputs=[output], live=True)
 
if __name__ == "__main__":
    demo.queue(max_size=200).launch()