File size: 3,529 Bytes
3127731
 
8c4ab6b
 
 
6943488
 
 
 
8c4ab6b
 
 
 
 
 
 
 
 
0ec0dbf
90f845c
 
0ec0dbf
8c4ab6b
6943488
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fbffd6e
 
6943488
90f845c
6943488
 
0ec0dbf
 
 
6943488
0ec0dbf
 
 
fbffd6e
0ec0dbf
 
8c4ab6b
0ec0dbf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
from __future__ import annotations

from transformers import AutoModelForCausalLM, AutoTokenizer
from PIL import Image
import gradio as gr
from typing import Iterable
from gradio.themes.base import Base
from gradio.themes.utils import colors, fonts, sizes
import time

# Load the model and tokenizer
model_id = "vikhyatk/moondream2"
revision = "2024-05-20"
model = AutoModelForCausalLM.from_pretrained(
    model_id, trust_remote_code=True, revision=revision
)
tokenizer = AutoTokenizer.from_pretrained(model_id, revision=revision)

def analyze_image_direct(name, count):
    # This is a placeholder function. You need to implement the logic based on your model's capabilities.
    # For demonstration, it returns a static response.
    return f"This is a placeholder answer for {name} with count {count}."

class Seafoam(Base):
    def __init__(
        self,
        *,
        primary_hue: colors.Color | str = colors.emerald,
        secondary_hue: colors.Color | str = colors.blue,
        neutral_hue: colors.Color | str = colors.blue,
        spacing_size: sizes.Size | str = sizes.spacing_md,
        radius_size: sizes.Size | str = sizes.radius_md,
        text_size: sizes.Size | str = sizes.text_lg,
        font: fonts.Font
        | str
        | Iterable[fonts.Font | str] = (
            fonts.GoogleFont("Quicksand"),
            "ui-sans-serif",
            "sans-serif",
        ),
        font_mono: fonts.Font
        | str
        | Iterable[fonts.Font | str] = (
            fonts.GoogleFont("IBM Plex Mono"),
            "ui-monospace",
            "monospace",
        ),
    ):
        super().__init__(
            primary_hue=primary_hue,
            secondary_hue=secondary_hue,
            neutral_hue=neutral_hue,
            spacing_size=spacing_size,
            radius_size=radius_size,
            text_size=text_size,
            font=font,
            font_mono=font_mono,
        )
        super().set(
            body_background_fill="repeating-linear-gradient(45deg, *primary_200, *primary_200 10px, *primary_50 10px, *primary_50 20px)",
            body_background_fill_dark="repeating-linear-gradient(45deg, *primary_800, *primary_800 10px, *primary_900 10px, *primary_900 20px)",
            button_primary_background_fill="linear-gradient(90deg, *primary_300, *secondary_400)",
            button_primary_background_fill_hover="linear-gradient(90deg, *primary_200, *secondary_300)",
            button_primary_text_color="white",
            button_primary_background_fill_dark="linear-gradient(90deg, *primary_600, *secondary_800)",
            slider_color="*secondary_300",
            slider_color_dark="*secondary_600",
            block_title_text_weight="600",
            block_border_width="3px",
            block_shadow="*shadow_drop_lg",
            button_shadow="*shadow_drop_lg",
            button_large_padding="32px",
        )


seafoam = Seafoam()

with gr.Blocks(theme=seafoam) as demo:
    with gr.Row():
        name_input = gr.Textbox(label="Name", placeholder="Enter your name here...")
    with gr.Row():
        count_slider = gr.Slider(label="Count", minimum=0, maximum=100, step=1, value=0)
    with gr.Row():
        submit_button = gr.Button("Submit")
        clear_button = gr.Button("Clear")
    output = gr.Textbox(label="Output")

    submit_button.click(fn=analyze_image_direct, inputs=[name_input, count_slider], outputs=output)
    clear_button.click(fn=lambda: ("", 0, ""), inputs=None, outputs=[name_input, count_slider, output])

demo.launch()