File size: 1,616 Bytes
475ca62 a1b5e12 8c4ab6b b51e1ff 8c4ab6b b51e1ff a1b5e12 b51e1ff a1b5e12 83e1fb4 b51e1ff 475ca62 a1b5e12 475ca62 b51e1ff a1b5e12 b51e1ff a1b5e12 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
import gradio as gr
from gradio import themes
from transformers import AutoModelForCausalLM, AutoTokenizer
import numpy as np
# Load the model and tokenizer
model_id = "vikhyatk/moondream2"
revision = "2024-05-20"
model = AutoModelForCausalLM.from_pretrained(
model_id, trust_remote_code=True, revision=revision
)
tokenizer = AutoTokenizer.from_pretrained(model_id, revision=revision)
def analyze_image_direct(image, question):
# Convert PIL Image to the format expected by the model
# This is a placeholder transformation; adjust as needed
enc_image = np.array(image)
# Example of processing text input with the model
inputs = tokenizer(question, return_tensors='pt')
outputs = model.generate(**inputs, max_length=50)
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
return answer
# Define a custom theme with purple color scheme
class PurpleTheme(themes.Theme):
base = "light"
font = "Arial"
colors = {
"primary": "#9b59b6",
"text": "#FFFFFF",
"background": "#5B2C6F",
"secondary_background": "#7D3C98",
}
# Create Gradio interface with the custom theme
iface = gr.Interface(fn=analyze_image_direct,
theme=PurpleTheme(),
inputs=[gr.Image(type="pil"), gr.Textbox(lines=2, placeholder="Enter your question here...")],
outputs='text',
title="Direct Image Question Answering",
description="Upload an image and ask a question about it directly using the model.")
# Launch the interface
iface.launch() |