Modarb-AI / app.py
Ahmed007's picture
Add application file
a1b5e12
raw
history blame
1.62 kB
import gradio as gr
from gradio import themes
from transformers import AutoModelForCausalLM, AutoTokenizer
import numpy as np
# Load the model and tokenizer
model_id = "vikhyatk/moondream2"
revision = "2024-05-20"
model = AutoModelForCausalLM.from_pretrained(
model_id, trust_remote_code=True, revision=revision
)
tokenizer = AutoTokenizer.from_pretrained(model_id, revision=revision)
def analyze_image_direct(image, question):
# Convert PIL Image to the format expected by the model
# This is a placeholder transformation; adjust as needed
enc_image = np.array(image)
# Example of processing text input with the model
inputs = tokenizer(question, return_tensors='pt')
outputs = model.generate(**inputs, max_length=50)
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
return answer
# Define a custom theme with purple color scheme
class PurpleTheme(themes.Theme):
base = "light"
font = "Arial"
colors = {
"primary": "#9b59b6",
"text": "#FFFFFF",
"background": "#5B2C6F",
"secondary_background": "#7D3C98",
}
# Create Gradio interface with the custom theme
iface = gr.Interface(fn=analyze_image_direct,
theme=PurpleTheme(),
inputs=[gr.Image(type="pil"), gr.Textbox(lines=2, placeholder="Enter your question here...")],
outputs='text',
title="Direct Image Question Answering",
description="Upload an image and ask a question about it directly using the model.")
# Launch the interface
iface.launch()