|
import gradio as gr |
|
from gradio import themes |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import numpy as np |
|
|
|
|
|
model_id = "vikhyatk/moondream2" |
|
revision = "2024-05-20" |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_id, trust_remote_code=True, revision=revision |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(model_id, revision=revision) |
|
|
|
def analyze_image_direct(image, question): |
|
|
|
|
|
enc_image = np.array(image) |
|
|
|
|
|
inputs = tokenizer(question, return_tensors='pt') |
|
outputs = model.generate(**inputs, max_length=50) |
|
answer = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
return answer |
|
|
|
|
|
class PurpleTheme(themes.Theme): |
|
base = "light" |
|
font = "Arial" |
|
colors = { |
|
"primary": "#9b59b6", |
|
"text": "#FFFFFF", |
|
"background": "#5B2C6F", |
|
"secondary_background": "#7D3C98", |
|
} |
|
|
|
|
|
iface = gr.Interface(fn=analyze_image_direct, |
|
theme=PurpleTheme(), |
|
inputs=[gr.Image(type="pil"), gr.Textbox(lines=2, placeholder="Enter your question here...")], |
|
outputs='text', |
|
title="Direct Image Question Answering", |
|
description="Upload an image and ask a question about it directly using the model.") |
|
|
|
|
|
iface.launch() |