Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import pipeline | |
# Streamlit app title | |
st.title("Text to Speech Converter") | |
# User input for text to convert to speech | |
text_input = st.text_area("Enter text to convert to speech:") | |
# Load the Hugging Face TTS model | |
tts_pipeline = pipeline("text-to-speech", model="espnet/kan-bayashi-ljspeech-vits") | |
# Button to generate speech | |
if st.button("Convert to Speech"): | |
if text_input: | |
# Generate the speech | |
tts_output = tts_pipeline(text_input) | |
# Save the generated speech to a file | |
with open("output.wav", "wb") as f: | |
f.write(tts_output["wav"]) | |
# Display the audio player in Streamlit | |
st.audio("output.wav") | |
else: | |
st.warning("Please enter some text to convert.") | |
# Footer | |
st.markdown("Powered by [Hugging Face Transformers](https://huggingface.co/transformers/).") | |