Last commit not found
raw
history blame
1.27 kB
import streamlit as st
from transformers import AutoModelForSequenceClassification, AutoTokenizer
# Replace with your actual model ID or access token from Hugging Face Hub
model_id = "your-model-id"
# Load the pre-trained sentiment analysis model and tokenizer from Hugging Face Hub
model = AutoModelForSequenceClassification.from_pretrained(model_id)
tokenizer = AutoTokenizer.from_pretrained(model_id)
def classify_sentiment(text):
"""
Function to preprocess text, make predictions using the loaded model,
and return the predicted sentiment.
"""
# Preprocess text (tokenization)
encoded_text = tokenizer(text, return_tensors="pt")
# Make prediction using the loaded model
output = model(**encoded_text)
predictions = output.logits.argmax(-1)
# Map predicted class label to sentiment category
sentiment_mapping = {0: "Negative", 1: "Neutral", 2: "Positive"}
sentiment = sentiment_mapping[predictions.item()]
return sentiment
def main():
"""
Streamlit app for sentiment analysis
"""
st.title("Sentiment Analysis App")
text_input = st.text_input("Enter text to analyze:")
if text_input:
sentiment = classify_sentiment(text_input)
st.write(f"Predicted Sentiment: {sentiment}")
if __name__ == "__main__":
main()