Spaces:
Runtime error
Runtime error
File size: 1,591 Bytes
1e0534b 12f4ac5 d37ec9b 12f4ac5 d37ec9b 0f38151 12f4ac5 0f38151 d37ec9b 12f4ac5 d48271c 1e0534b a86c83d 1e0534b a86c83d d48271c 1e0534b d48271c 1e0534b 20f183a 1e0534b d48271c 12f4ac5 a86c83d 12f4ac5 0f38151 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
import gradio as gr
import numpy as np
import pickle
import tensorflow as tf
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.initializers import Orthogonal
from tensorflow.keras.optimizers import Adam
# Load the trained model
custom_objects = {'Orthogonal': Orthogonal, 'Adam': Adam}
model = load_model('sentiment_analysis_model.h5', custom_objects=custom_objects)
# Load the tokenizer
with open('tokenizer.pickle', 'rb') as handle:
tokenizer = pickle.load(handle)
# Define the max sequence length (as used during training)
max_seq_length = 100 # Adjust this based on your training setup
# Sentiment mapping
sentiment_mapping = {0: "Negative", 1: "Neutral", 2: "Positive"}
def classify_sentiment(text):
# Preprocess the text (tokenization, padding, etc.)
text_sequence = tokenizer.texts_to_sequences([text])
padded_sequence = pad_sequences(text_sequence, maxlen=max_seq_length)
# Make prediction using the trained model
prediction = model.predict(padded_sequence)
# Convert prediction to class label
predicted_label = np.argmax(prediction)
# Map class label to sentiment
sentiment = sentiment_mapping[predicted_label]
return sentiment
# Gradio interface
interface = gr.Interface(
fn=classify_sentiment,
inputs=gr.inputs.Textbox(lines=2, placeholder="Enter a sentence..."),
outputs="text",
title="Sentiment Analysis",
description="Enter a sentence to classify its sentiment."
)
if __name__ == "__main__":
interface.launch()
|