Spaces:
Runtime error
Runtime error
import gradio as gr | |
import numpy as np | |
import pickle | |
import tensorflow as tf | |
from tensorflow.keras.models import load_model | |
from tensorflow.keras.preprocessing.sequence import pad_sequences | |
from tensorflow.keras.initializers import Orthogonal | |
from tensorflow.keras.optimizers import Adam | |
# Load the trained model | |
custom_objects = {'Orthogonal': Orthogonal, 'Adam': Adam} | |
model = load_model('sentiment_analysis_model.h5', custom_objects=custom_objects) | |
# Load the tokenizer | |
with open('tokenizer.pickle', 'rb') as handle: | |
tokenizer = pickle.load(handle) | |
# Define the max sequence length (as used during training) | |
max_seq_length = 100 # Adjust this based on your training setup | |
# Sentiment mapping | |
sentiment_mapping = {0: "Negative", 1: "Neutral", 2: "Positive"} | |
def classify_sentiment(text): | |
# Preprocess the text (tokenization, padding, etc.) | |
text_sequence = tokenizer.texts_to_sequences([text]) | |
padded_sequence = pad_sequences(text_sequence, maxlen=max_seq_length) | |
# Make prediction using the trained model | |
prediction = model.predict(padded_sequence) | |
# Convert prediction to class label | |
predicted_label = np.argmax(prediction) | |
# Map class label to sentiment | |
sentiment = sentiment_mapping[predicted_label] | |
return sentiment | |
# Gradio interface | |
interface = gr.Interface( | |
fn=classify_sentiment, | |
inputs=gr.inputs.Textbox(lines=2, placeholder="Enter a sentence..."), | |
outputs="text", | |
title="Sentiment Analysis", | |
description="Enter a sentence to classify its sentiment." | |
) | |
if __name__ == "__main__": | |
interface.launch() | |