Spaces:
Sleeping
Sleeping
File size: 5,560 Bytes
401addd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
import gradio as gr
from transformers import pipeline
import os
from huggingface_hub import login
# Hugging Face login function
def hf_login(token):
if token:
try:
login(token)
return "Successfully logged in to Hugging Face Hub"
except Exception as e:
return f"Login error: {str(e)}"
return "No token provided"
# Define all pipelines with lazy loading
def get_pipeline(model_name):
"""Lazy load pipeline only when needed"""
try:
if model_name == "GPT-2 Original":
return pipeline("text-generation", model="gpt2")
elif model_name == "GPT-2 Medium":
return pipeline("text-generation", model="gpt2-medium")
elif model_name == "DistilGPT-2":
return pipeline("text-generation", model="distilgpt2")
elif model_name == "German GPT-2":
return pipeline("text-generation", model="german-nlp-group/german-gpt2")
elif model_name == "German Wechsel GPT-2":
return pipeline("text-generation", model="benjamin/gpt2-wechsel-german")
elif model_name == "T5 Base":
return pipeline("text2text-generation", model="t5-base")
elif model_name == "T5 Large":
return pipeline("text2text-generation", model="t5-large")
elif model_name == "Text Classification":
return pipeline("text-classification", model="distilbert-base-uncased-finetuned-sst-2-english")
elif model_name == "Sentiment Analysis":
return pipeline("sentiment-analysis", model="nlptown/bert-base-multilingual-uncased-sentiment")
else:
raise ValueError(f"Unknown model: {model_name}")
except Exception as e:
raise Exception(f"Error loading model {model_name}: {str(e)}")
def respond(
message,
history: list[tuple[str, str]],
system_message,
model_name,
max_tokens,
temperature,
top_p,
):
try:
# Get the appropriate pipeline
pipe = get_pipeline(model_name)
# For text generation models
if model_name in ["GPT-2 Original", "GPT-2 Medium", "DistilGPT-2",
"German GPT-2", "German Wechsel GPT-2"]:
# Prepare full prompt
full_history = ' '.join([f"User: {msg[0]}\nAssistant: {msg[1] or ''}" for msg in history]) if history else ''
full_prompt = f"{system_message}\n{full_history}\nUser: {message}\nAssistant:"
response = pipe(
full_prompt,
max_length=len(full_prompt.split()) + max_tokens,
temperature=temperature,
top_p=top_p,
num_return_sequences=1
)[0]['generated_text']
# Extract just the new assistant response
assistant_response = response[len(full_prompt):].strip()
return assistant_response
# For T5 models
elif model_name in ["T5 Base", "T5 Large"]:
# T5 doesn't handle chat history the same way, so simplify
input_text = f"{message}"
response = pipe(
input_text,
max_length=max_tokens,
temperature=temperature,
top_p=top_p,
num_return_sequences=1
)[0]['generated_text']
return response
# For classification and sentiment models
elif model_name == "Text Classification":
result = pipe(message)[0]
return f"Classification: {result['label']} (Confidence: {result['score']:.2f})"
elif model_name == "Sentiment Analysis":
result = pipe(message)[0]
return f"Sentiment: {result['label']} (Confidence: {result['score']:.2f})"
except Exception as e:
return f"Error: {str(e)}"
def create_interface():
with gr.Blocks(title="Hugging Face Models Demo") as demo:
gr.Markdown("# Hugging Face Models Chat Interface")
with gr.Accordion("Hugging Face Login", open=False):
with gr.Row():
hf_token = gr.Textbox(label="Enter Hugging Face Token", type="password")
login_btn = gr.Button("Login")
login_output = gr.Textbox(label="Login Status")
login_btn.click(hf_login, inputs=[hf_token], outputs=[login_output])
chat_interface = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a helpful assistant.", label="System message"),
gr.Dropdown(
["GPT-2 Original", "GPT-2 Medium", "DistilGPT-2",
"German GPT-2", "German Wechsel GPT-2",
"T5 Base", "T5 Large",
"Text Classification", "Sentiment Analysis"],
value="GPT-2 Original",
label="Select Model"
),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
]
)
return demo
if __name__ == "__main__":
interface = create_interface()
interface.launch(share=True) |