File size: 5,560 Bytes
401addd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import gradio as gr
from transformers import pipeline
import os
from huggingface_hub import login

# Hugging Face login function
def hf_login(token):
    if token:
        try:
            login(token)
            return "Successfully logged in to Hugging Face Hub"
        except Exception as e:
            return f"Login error: {str(e)}"
    return "No token provided"

# Define all pipelines with lazy loading
def get_pipeline(model_name):
    """Lazy load pipeline only when needed"""
    try:
        if model_name == "GPT-2 Original":
            return pipeline("text-generation", model="gpt2")
        elif model_name == "GPT-2 Medium":
            return pipeline("text-generation", model="gpt2-medium")
        elif model_name == "DistilGPT-2":
            return pipeline("text-generation", model="distilgpt2")
        elif model_name == "German GPT-2":
            return pipeline("text-generation", model="german-nlp-group/german-gpt2")
        elif model_name == "German Wechsel GPT-2":
            return pipeline("text-generation", model="benjamin/gpt2-wechsel-german")
        elif model_name == "T5 Base":
            return pipeline("text2text-generation", model="t5-base")
        elif model_name == "T5 Large":
            return pipeline("text2text-generation", model="t5-large")
        elif model_name == "Text Classification":
            return pipeline("text-classification", model="distilbert-base-uncased-finetuned-sst-2-english")
        elif model_name == "Sentiment Analysis":
            return pipeline("sentiment-analysis", model="nlptown/bert-base-multilingual-uncased-sentiment")
        else:
            raise ValueError(f"Unknown model: {model_name}")
    except Exception as e:
        raise Exception(f"Error loading model {model_name}: {str(e)}")

def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    model_name,
    max_tokens,
    temperature,
    top_p,
):
    try:
        # Get the appropriate pipeline
        pipe = get_pipeline(model_name)
        
        # For text generation models
        if model_name in ["GPT-2 Original", "GPT-2 Medium", "DistilGPT-2", 
                          "German GPT-2", "German Wechsel GPT-2"]:
            # Prepare full prompt
            full_history = ' '.join([f"User: {msg[0]}\nAssistant: {msg[1] or ''}" for msg in history]) if history else ''
            full_prompt = f"{system_message}\n{full_history}\nUser: {message}\nAssistant:"
            
            response = pipe(
                full_prompt, 
                max_length=len(full_prompt.split()) + max_tokens,
                temperature=temperature,
                top_p=top_p,
                num_return_sequences=1
            )[0]['generated_text']
            
            # Extract just the new assistant response
            assistant_response = response[len(full_prompt):].strip()
            return assistant_response
        
        # For T5 models
        elif model_name in ["T5 Base", "T5 Large"]:
            # T5 doesn't handle chat history the same way, so simplify
            input_text = f"{message}"
            
            response = pipe(
                input_text,
                max_length=max_tokens,
                temperature=temperature,
                top_p=top_p,
                num_return_sequences=1
            )[0]['generated_text']
            
            return response
        
        # For classification and sentiment models
        elif model_name == "Text Classification":
            result = pipe(message)[0]
            return f"Classification: {result['label']} (Confidence: {result['score']:.2f})"
        
        elif model_name == "Sentiment Analysis":
            result = pipe(message)[0]
            return f"Sentiment: {result['label']} (Confidence: {result['score']:.2f})"
            
    except Exception as e:
        return f"Error: {str(e)}"

def create_interface():
    with gr.Blocks(title="Hugging Face Models Demo") as demo:
        gr.Markdown("# Hugging Face Models Chat Interface")
        
        with gr.Accordion("Hugging Face Login", open=False):
            with gr.Row():
                hf_token = gr.Textbox(label="Enter Hugging Face Token", type="password")
                login_btn = gr.Button("Login")
                login_output = gr.Textbox(label="Login Status")
            login_btn.click(hf_login, inputs=[hf_token], outputs=[login_output])
        
        chat_interface = gr.ChatInterface(
            respond,
            additional_inputs=[
                gr.Textbox(value="You are a helpful assistant.", label="System message"),
                gr.Dropdown(
                    ["GPT-2 Original", "GPT-2 Medium", "DistilGPT-2", 
                     "German GPT-2", "German Wechsel GPT-2", 
                     "T5 Base", "T5 Large", 
                     "Text Classification", "Sentiment Analysis"], 
                    value="GPT-2 Original", 
                    label="Select Model"
                ),
                gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
                gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"),
                gr.Slider(
                    minimum=0.1,
                    maximum=1.0,
                    value=0.95,
                    step=0.05,
                    label="Top-p (nucleus sampling)",
                ),
            ]
        )
    
    return demo

if __name__ == "__main__":
    interface = create_interface()
    interface.launch(share=True)