File size: 6,051 Bytes
ea69cd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import streamlit as st
import os
import json
import datetime
import openai
from datasets import load_dataset, Dataset, concatenate_datasets
from huggingface_hub import login

# -- Einstellungen für Hugging Face Dataset Repository --
# Ersetze "your_username/customer_memory" durch deinen eigenen Repository-Namen!
DATASET_REPO = "your_username/customer_memory"

# Hugging Face Login
hf_token = st.sidebar.text_input("Enter your Hugging Face Token", type="password")
if hf_token:
    login(token=hf_token)
    st.sidebar.success("Logged in to Hugging Face!")

# Hilfsfunktion: Versuche, das Dataset vom HF Hub zu laden; falls nicht vorhanden, initialisiere es
def load_memory_dataset():
    try:
        ds = load_dataset(DATASET_REPO, split="train")
        st.write("Dataset loaded from HF Hub.")
    except Exception as e:
        st.write("Dataset not found on HF Hub. Creating a new one...")
        # Leeres Dataset mit den Spalten: user_id, query, response
        data = {"user_id": [], "query": [], "response": []}
        ds = Dataset.from_dict(data)
        ds.push_to_hub(DATASET_REPO)
        st.write("New dataset created and pushed to HF Hub.")
    return ds

# Hilfsfunktion: Füge einen neuen Eintrag (Memory) hinzu und pushe das aktualisierte Dataset
def add_to_memory(user_id, query, response):
    ds = load_memory_dataset()
    # Neuer Eintrag als kleines Dataset
    new_entry = Dataset.from_dict({
        "user_id": [user_id],
        "query": [query],
        "response": [response]
    })
    # Bestehendes Dataset mit dem neuen Eintrag zusammenführen
    updated_ds = concatenate_datasets([ds, new_entry])
    # Aktualisiere das Dataset auf HF Hub
    updated_ds.push_to_hub(DATASET_REPO)
    st.write("Memory updated.")

# Hilfsfunktion: Filtere das Dataset nach einer bestimmten customer_id
def get_memory(user_id):
    ds = load_memory_dataset()
    return ds.filter(lambda x: x["user_id"] == user_id)

# OpenAI GPT-4 API-Anbindung
def generate_response(prompt):
    response = openai.ChatCompletion.create(
        model="gpt-4",
        messages=[
            {"role": "system", "content": "You are a customer support AI for TechGadgets.com."},
            {"role": "user", "content": prompt}
        ]
    )
    return response.choices[0].message.content

# Streamlit App UI
st.title("AI Customer Support Agent with Memory 🛒")
st.caption("Chat with a customer support assistant who remembers your past interactions.")

# OpenAI API Key Eingabe
openai_api_key = st.text_input("Enter OpenAI API Key", type="password")
if openai_api_key:
    os.environ["OPENAI_API_KEY"] = openai_api_key
    openai.api_key = openai_api_key

    # Sidebar: Customer ID und Optionen
    st.sidebar.title("Enter your Customer ID:")
    customer_id = st.sidebar.text_input("Customer ID")
    
    # Optional: Synthetic Data generieren (Beispiel-Daten)
    if st.sidebar.button("Generate Synthetic Data"):
        if customer_id:
            synthetic_data = {
                "name": "Max Mustermann",
                "recent_order": {
                    "product": "High-end Smartphone",
                    "order_date": (datetime.datetime.now() - datetime.timedelta(days=10)).strftime("%B %d, %Y"),
                    "delivery_date": (datetime.datetime.now() + datetime.timedelta(days=2)).strftime("%B %d, %Y"),
                    "order_number": "ORD123456"
                },
                "previous_orders": [
                    {"product": "Laptop", "order_date": "January 12, 2025"},
                    {"product": "Tablet", "order_date": "March 01, 2025"}
                ],
                "customer_service_interactions": [
                    "Asked about order status",
                    "Inquired about warranty"
                ]
            }
            st.session_state.customer_data = synthetic_data
            st.sidebar.success("Synthetic data generated!")
        else:
            st.sidebar.error("Please enter a customer ID first.")

    if st.sidebar.button("View Customer Profile"):
        if "customer_data" in st.session_state and st.session_state.customer_data:
            st.sidebar.json(st.session_state.customer_data)
        else:
            st.sidebar.info("No synthetic data available.")

    if st.sidebar.button("View Memory Info"):
        if customer_id:
            memories = get_memory(customer_id)
            st.sidebar.write(f"Memory for customer **{customer_id}**:")
            for mem in memories:
                st.sidebar.write(f"**Query:** {mem['query']}\n**Response:** {mem['response']}\n---")
        else:
            st.sidebar.error("Please enter a customer ID.")

    # Initialisiere Chatverlauf in session_state
    if "messages" not in st.session_state:
        st.session_state.messages = []

    # Zeige bisherigen Chatverlauf
    for message in st.session_state.messages:
        st.chat_message(message["role"]).markdown(message["content"])

    # Haupt-Chat: Benutzer-Eingabe
    query = st.chat_input("How can I assist you today?")
    if query and customer_id:
        # Hole bisherigen Memory-Context
        memories = get_memory(customer_id)
        context = ""
        for mem in memories:
            context += f"Query: {mem['query']}\nResponse: {mem['response']}\n"
        # Kombiniere Kontext mit aktueller Anfrage
        full_prompt = context + f"\nCustomer: {query}\nSupport Agent:"
        with st.spinner("Generating response..."):
            answer = generate_response(full_prompt)
        # Aktualisiere den Chatverlauf
        st.session_state.messages.append({"role": "user", "content": query})
        st.session_state.messages.append({"role": "assistant", "content": answer})
        st.chat_message("assistant").markdown(answer)
        # Speicher die Interaktion in der Memory (Dataset)
        add_to_memory(customer_id, query, answer)
    elif query and not customer_id:
        st.error("Please enter a customer ID to start the chat.")
else:
    st.warning("Please enter your OpenAI API key to use the customer support agent.")