Spaces:
Runtime error
Runtime error
Update txt2panoimg/text_to_360panorama_image_pipeline.py
Browse files
txt2panoimg/text_to_360panorama_image_pipeline.py
CHANGED
|
@@ -1,19 +1,32 @@
|
|
| 1 |
-
# Copyright Β© Alibaba, Inc. and its affiliates.
|
| 2 |
import random
|
| 3 |
from typing import Any, Dict
|
| 4 |
|
| 5 |
import numpy as np
|
| 6 |
import torch
|
| 7 |
-
from basicsr.archs.rrdbnet_arch import RRDBNet
|
| 8 |
from diffusers import (ControlNetModel, DiffusionPipeline,
|
| 9 |
EulerAncestralDiscreteScheduler,
|
| 10 |
UniPCMultistepScheduler)
|
| 11 |
from PIL import Image
|
| 12 |
-
from
|
| 13 |
|
| 14 |
from .pipeline_base import StableDiffusionBlendExtendPipeline
|
| 15 |
from .pipeline_sr import StableDiffusionControlNetImg2ImgPanoPipeline
|
| 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
class Text2360PanoramaImagePipeline(DiffusionPipeline):
|
| 19 |
""" Stable Diffusion for 360 Panorama Image Generation Pipeline.
|
|
@@ -40,7 +53,7 @@ class Text2360PanoramaImagePipeline(DiffusionPipeline):
|
|
| 40 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu'
|
| 41 |
) if device is None else device
|
| 42 |
if device == 'gpu':
|
| 43 |
-
device = 'cuda'
|
| 44 |
|
| 45 |
torch_dtype = kwargs.get('torch_dtype', torch.float16)
|
| 46 |
enable_xformers_memory_efficient_attention = kwargs.get(
|
|
@@ -60,7 +73,6 @@ class Text2360PanoramaImagePipeline(DiffusionPipeline):
|
|
| 60 |
self.pipe.enable_xformers_memory_efficient_attention()
|
| 61 |
except Exception as e:
|
| 62 |
print(e)
|
| 63 |
-
self.pipe.enable_model_cpu_offload()
|
| 64 |
|
| 65 |
# init controlnet-sr model
|
| 66 |
base_model_path = model + '/sr-base'
|
|
@@ -79,35 +91,15 @@ class Text2360PanoramaImagePipeline(DiffusionPipeline):
|
|
| 79 |
self.pipe_sr.enable_xformers_memory_efficient_attention()
|
| 80 |
except Exception as e:
|
| 81 |
print(e)
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
# init realesrgan model
|
| 85 |
-
sr_model = RRDBNet(
|
| 86 |
-
num_in_ch=3,
|
| 87 |
-
num_out_ch=3,
|
| 88 |
-
num_feat=64,
|
| 89 |
-
num_block=23,
|
| 90 |
-
num_grow_ch=32,
|
| 91 |
-
scale=2)
|
| 92 |
-
netscale = 2
|
| 93 |
-
|
| 94 |
model_path = model + '/RealESRGAN_x2plus.pth'
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
self.upsampler = RealESRGANer(
|
| 98 |
-
scale=netscale,
|
| 99 |
-
model_path=model_path,
|
| 100 |
-
dni_weight=dni_weight,
|
| 101 |
-
model=sr_model,
|
| 102 |
-
tile=384,
|
| 103 |
-
tile_pad=20,
|
| 104 |
-
pre_pad=20,
|
| 105 |
-
half=False,
|
| 106 |
-
device=device,
|
| 107 |
-
)
|
| 108 |
|
| 109 |
@staticmethod
|
| 110 |
def blend_h(a, b, blend_extent):
|
|
|
|
|
|
|
| 111 |
blend_extent = min(a.shape[1], b.shape[1], blend_extent)
|
| 112 |
for x in range(blend_extent):
|
| 113 |
b[:, x, :] = a[:, -blend_extent
|
|
@@ -188,8 +180,8 @@ class Text2360PanoramaImagePipeline(DiffusionPipeline):
|
|
| 188 |
output_img = np.array(output_img)
|
| 189 |
output_img = np.concatenate(
|
| 190 |
[output_img, output_img[:, :blend_extend, :]], axis=1)
|
| 191 |
-
output_img
|
| 192 |
-
output_img
|
| 193 |
output_img = self.blend_h(output_img, output_img,
|
| 194 |
blend_extend * outscale)
|
| 195 |
output_img = Image.fromarray(output_img[:, :w * outscale, :])
|
|
|
|
|
|
|
| 1 |
import random
|
| 2 |
from typing import Any, Dict
|
| 3 |
|
| 4 |
import numpy as np
|
| 5 |
import torch
|
|
|
|
| 6 |
from diffusers import (ControlNetModel, DiffusionPipeline,
|
| 7 |
EulerAncestralDiscreteScheduler,
|
| 8 |
UniPCMultistepScheduler)
|
| 9 |
from PIL import Image
|
| 10 |
+
from RealESRGAN import RealESRGAN
|
| 11 |
|
| 12 |
from .pipeline_base import StableDiffusionBlendExtendPipeline
|
| 13 |
from .pipeline_sr import StableDiffusionControlNetImg2ImgPanoPipeline
|
| 14 |
|
| 15 |
+
class LazyRealESRGAN:
|
| 16 |
+
def __init__(self, device, scale):
|
| 17 |
+
self.device = device
|
| 18 |
+
self.scale = scale
|
| 19 |
+
self.model = None
|
| 20 |
+
self.model_path = None
|
| 21 |
+
|
| 22 |
+
def load_model(self):
|
| 23 |
+
if self.model is None:
|
| 24 |
+
self.model = RealESRGAN(self.device, scale=self.scale)
|
| 25 |
+
self.model.load_weights(self.model_path, download=False)
|
| 26 |
+
|
| 27 |
+
def predict(self, img):
|
| 28 |
+
self.load_model()
|
| 29 |
+
return self.model.predict(img)
|
| 30 |
|
| 31 |
class Text2360PanoramaImagePipeline(DiffusionPipeline):
|
| 32 |
""" Stable Diffusion for 360 Panorama Image Generation Pipeline.
|
|
|
|
| 53 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu'
|
| 54 |
) if device is None else device
|
| 55 |
if device == 'gpu':
|
| 56 |
+
device = torch.device('cuda')
|
| 57 |
|
| 58 |
torch_dtype = kwargs.get('torch_dtype', torch.float16)
|
| 59 |
enable_xformers_memory_efficient_attention = kwargs.get(
|
|
|
|
| 73 |
self.pipe.enable_xformers_memory_efficient_attention()
|
| 74 |
except Exception as e:
|
| 75 |
print(e)
|
|
|
|
| 76 |
|
| 77 |
# init controlnet-sr model
|
| 78 |
base_model_path = model + '/sr-base'
|
|
|
|
| 91 |
self.pipe_sr.enable_xformers_memory_efficient_attention()
|
| 92 |
except Exception as e:
|
| 93 |
print(e)
|
| 94 |
+
device = torch.device("cuda")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
model_path = model + '/RealESRGAN_x2plus.pth'
|
| 96 |
+
self.upsampler = LazyRealESRGAN(device=device, scale=2)
|
| 97 |
+
self.upsampler.model_path = model_path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
|
| 99 |
@staticmethod
|
| 100 |
def blend_h(a, b, blend_extent):
|
| 101 |
+
a = np.array(a)
|
| 102 |
+
b = np.array(b)
|
| 103 |
blend_extent = min(a.shape[1], b.shape[1], blend_extent)
|
| 104 |
for x in range(blend_extent):
|
| 105 |
b[:, x, :] = a[:, -blend_extent
|
|
|
|
| 180 |
output_img = np.array(output_img)
|
| 181 |
output_img = np.concatenate(
|
| 182 |
[output_img, output_img[:, :blend_extend, :]], axis=1)
|
| 183 |
+
output_img = self.upsampler.predict(
|
| 184 |
+
output_img)
|
| 185 |
output_img = self.blend_h(output_img, output_img,
|
| 186 |
blend_extend * outscale)
|
| 187 |
output_img = Image.fromarray(output_img[:, :w * outscale, :])
|