Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -27,7 +27,7 @@ def process_video(video_path):
|
|
27 |
cap = cv2.VideoCapture(video_path)
|
28 |
frames = []
|
29 |
ball_positions = []
|
30 |
-
detection_frames = [] # Track frames with
|
31 |
debug_log = []
|
32 |
|
33 |
frame_count = 0
|
@@ -38,28 +38,26 @@ def process_video(video_path):
|
|
38 |
frame_count += 1
|
39 |
frames.append(frame.copy())
|
40 |
results = model.predict(frame, conf=CONF_THRESHOLD)
|
41 |
-
detections = 0
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
detection_frames.append(frame_count - 1) # 0-based index
|
48 |
-
cv2.rectangle(frame, (int(x1), int(y1)), (int(x2), int(y2)), (0, 255, 0), 2)
|
49 |
frames[-1] = frame
|
50 |
-
debug_log.append(f"Frame {frame_count}: {detections} ball detections")
|
51 |
cap.release()
|
52 |
|
53 |
if not ball_positions:
|
54 |
-
debug_log.append("No
|
55 |
else:
|
56 |
-
debug_log.append(f"Total ball detections: {len(ball_positions)}")
|
57 |
|
58 |
return frames, ball_positions, detection_frames, "\n".join(debug_log)
|
59 |
|
60 |
def estimate_trajectory(ball_positions, detection_frames, frames):
|
61 |
if len(ball_positions) < 2:
|
62 |
-
return None, None, None, None, None, "Error: Fewer than 2 ball detections for trajectory"
|
63 |
frame_height = frames[0].shape[0]
|
64 |
|
65 |
# Extract x, y coordinates
|
@@ -67,7 +65,7 @@ def estimate_trajectory(ball_positions, detection_frames, frames):
|
|
67 |
y_coords = [pos[1] for pos in ball_positions]
|
68 |
times = np.array(detection_frames) / FRAME_RATE
|
69 |
|
70 |
-
# Pitch point: first detection or when y exceeds PITCH_ZONE_Y
|
71 |
pitch_idx = 0
|
72 |
for i, y in enumerate(y_coords):
|
73 |
if y > frame_height * PITCH_ZONE_Y:
|
@@ -97,7 +95,7 @@ def estimate_trajectory(ball_positions, detection_frames, frames):
|
|
97 |
fx = interp1d(times, x_coords, kind='linear', fill_value="extrapolate")
|
98 |
fy = interp1d(times, y_coords, kind='quadratic', fill_value="extrapolate")
|
99 |
except Exception as e:
|
100 |
-
return None, None, None, None, None, f"Error in trajectory interpolation: {str(e)}"
|
101 |
|
102 |
# Trajectory for visualization (detected frames only)
|
103 |
vis_trajectory = list(zip(x_coords, y_coords))
|
@@ -117,7 +115,7 @@ def lbw_decision(ball_positions, full_trajectory, frames, pitch_point, impact_po
|
|
117 |
if not frames:
|
118 |
return "Error: No frames processed", None, None, None
|
119 |
if not full_trajectory or len(ball_positions) < 2:
|
120 |
-
return "Not enough data (insufficient ball detections)", None, None, None
|
121 |
|
122 |
frame_height, frame_width = frames[0].shape[:2]
|
123 |
stumps_x = frame_width / 2
|
@@ -210,10 +208,10 @@ iface = gr.Interface(
|
|
210 |
inputs=gr.Video(label="Upload Video Clip"),
|
211 |
outputs=[
|
212 |
gr.Textbox(label="DRS Decision and Debug Log"),
|
213 |
-
gr.Video(label="Very Slow-Motion Replay with Ball Detection (Green), Trajectory (Blue Line), Pitch Point (Red), Impact Point (Yellow)")
|
214 |
],
|
215 |
title="AI-Powered DRS for LBW in Local Cricket",
|
216 |
-
description="Upload a video clip of a cricket delivery to get an LBW decision and slow-motion replay showing ball detection (green boxes), trajectory (blue line), pitch point (red circle),
|
217 |
)
|
218 |
|
219 |
if __name__ == "__main__":
|
|
|
27 |
cap = cv2.VideoCapture(video_path)
|
28 |
frames = []
|
29 |
ball_positions = []
|
30 |
+
detection_frames = [] # Track frames with exactly one detection
|
31 |
debug_log = []
|
32 |
|
33 |
frame_count = 0
|
|
|
38 |
frame_count += 1
|
39 |
frames.append(frame.copy())
|
40 |
results = model.predict(frame, conf=CONF_THRESHOLD)
|
41 |
+
detections = [det for det in results[0].boxes if det.cls == 0] # Class 0 is cricketBall
|
42 |
+
if len(detections) == 1: # Only consider frames with exactly one detection
|
43 |
+
x1, y1, x2, y2 = detections[0].xyxy[0].cpu().numpy()
|
44 |
+
ball_positions.append([(x1 + x2) / 2, (y1 + y2) / 2])
|
45 |
+
detection_frames.append(frame_count - 1) # 0-based index
|
46 |
+
cv2.rectangle(frame, (int(x1), int(y1)), (int(x2), int(y2)), (0, 255, 0), 2)
|
|
|
|
|
47 |
frames[-1] = frame
|
48 |
+
debug_log.append(f"Frame {frame_count}: {len(detections)} ball detections")
|
49 |
cap.release()
|
50 |
|
51 |
if not ball_positions:
|
52 |
+
debug_log.append("No valid single-ball detections in any frame")
|
53 |
else:
|
54 |
+
debug_log.append(f"Total valid single-ball detections: {len(ball_positions)}")
|
55 |
|
56 |
return frames, ball_positions, detection_frames, "\n".join(debug_log)
|
57 |
|
58 |
def estimate_trajectory(ball_positions, detection_frames, frames):
|
59 |
if len(ball_positions) < 2:
|
60 |
+
return None, None, None, None, None, None, "Error: Fewer than 2 valid single-ball detections for trajectory"
|
61 |
frame_height = frames[0].shape[0]
|
62 |
|
63 |
# Extract x, y coordinates
|
|
|
65 |
y_coords = [pos[1] for pos in ball_positions]
|
66 |
times = np.array(detection_frames) / FRAME_RATE
|
67 |
|
68 |
+
# Pitch point: first valid detection or when y exceeds PITCH_ZONE_Y
|
69 |
pitch_idx = 0
|
70 |
for i, y in enumerate(y_coords):
|
71 |
if y > frame_height * PITCH_ZONE_Y:
|
|
|
95 |
fx = interp1d(times, x_coords, kind='linear', fill_value="extrapolate")
|
96 |
fy = interp1d(times, y_coords, kind='quadratic', fill_value="extrapolate")
|
97 |
except Exception as e:
|
98 |
+
return None, None, None, None, None, None, f"Error in trajectory interpolation: {str(e)}"
|
99 |
|
100 |
# Trajectory for visualization (detected frames only)
|
101 |
vis_trajectory = list(zip(x_coords, y_coords))
|
|
|
115 |
if not frames:
|
116 |
return "Error: No frames processed", None, None, None
|
117 |
if not full_trajectory or len(ball_positions) < 2:
|
118 |
+
return "Not enough data (insufficient valid single-ball detections)", None, None, None
|
119 |
|
120 |
frame_height, frame_width = frames[0].shape[:2]
|
121 |
stumps_x = frame_width / 2
|
|
|
208 |
inputs=gr.Video(label="Upload Video Clip"),
|
209 |
outputs=[
|
210 |
gr.Textbox(label="DRS Decision and Debug Log"),
|
211 |
+
gr.Video(label="Very Slow-Motion Replay with Ball Detection (Green), Trajectory (Blue Line), Pitch Point (Red), Impact Point (Yellow), Stumps (White)")
|
212 |
],
|
213 |
title="AI-Powered DRS for LBW in Local Cricket",
|
214 |
+
description="Upload a video clip of a cricket delivery to get an LBW decision and slow-motion replay showing ball detection (green boxes), trajectory (blue line), pitch point (red circle), impact point (yellow circle), and stumps (white lines)."
|
215 |
)
|
216 |
|
217 |
if __name__ == "__main__":
|