Spaces:
Runtime error
Runtime error
File size: 75,193 Bytes
18b5fcf 8a03eff 18b5fcf 143a54f 18b5fcf 0325edd 18b5fcf 0325edd 18b5fcf 143a54f 18b5fcf 0fa3e2d 18b5fcf 0325edd 18b5fcf 0fa3e2d 2950403 0325edd 0fa3e2d 9f53060 ae5bdaf 18b5fcf ae5bdaf 18b5fcf ae5bdaf 18b5fcf ae5bdaf 9f53060 18b5fcf 519db0a 18b5fcf 519db0a 18b5fcf 0fa3e2d 18b5fcf 0fa3e2d 18b5fcf 0fa3e2d 18b5fcf 0fa3e2d 18b5fcf 0fa3e2d 18b5fcf 0fa3e2d 18b5fcf 0fa3e2d 18b5fcf 0fa3e2d 18b5fcf 0fa3e2d 519db0a 0fa3e2d 18b5fcf 7f7384d 18b5fcf 7f7384d 18b5fcf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 |
#pip install stramlit wordcloud
import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt
import plotly.express as px
import plotly.figure_factory as ff
import warnings
warnings.filterwarnings("ignore")
from wordcloud import WordCloud
from sklearn.preprocessing import StandardScaler
import numpy as np
from sklearn.preprocessing import LabelEncoder
from pandasai import SmartDataframe
from pandasai.llm.google_gemini import GoogleGemini
import warnings
from pandasai.responses.response_parser import ResponseParser
# pip install wordcloud
# !pip install kmodes
from sklearn.decomposition import PCA
from sklearn.experimental import enable_iterative_imputer
from sklearn.impute import IterativeImputer
from kmodes.kprototypes import KPrototypes
import plotly.graph_objects as go
import streamlit as st
#pip install google-generativeai
import os
from huggingface_hub import hf_hub_download
repo_id = "Akankshg/ML_DATA"
filename = "EDA_DATA.parquet"
# Access the token
token = os.environ["HUGGING_FACE_HUB_TOKEN"]
# Download the file
local_file = hf_hub_download(repo_id=repo_id, filename=filename, repo_type="dataset",token=token)
class StreamlitResponse(ResponseParser):
def __init__(self, context) -> None:
super().__init__(context)
def format_dataframe(self, result):
st.dataframe(result["value"])
return
def format_plot(self, result):
st.image(result["value"])
return
st.set_page_config(page_title="Healthcare Data Analysis", page_icon=":bar_chart:", layout="wide")
st.title(':bar_chart: Healthcare Data Analysis Dashboard')
st.markdown('<style>div.block-container{padding-top:1rem;}</style>',unsafe_allow_html=True)
# Sidebar 1
st.sidebar.title('Dashboard Options')
analysis_option = st.sidebar.selectbox('Select Analysis', ['Data','EDA', 'Machine Learning','Health Care Chat Bot AI'])
## Loading data
@st.cache_data()
def fetch_data():
data = pd.read_parquet(local_file)
return data
data = fetch_data()
def funnel_chart(df):
Patient_visit = df[['PatientID','EncounterDate','LegalSex']].copy()
Patient_visit['WeekDay'] = Patient_visit['EncounterDate'].dt.day_name()
Patient_visit['WeekDay'] = Patient_visit['WeekDay'].astype('string')
output_df = Patient_visit.groupby(['WeekDay', 'LegalSex']).size().unstack(fill_value=0)
output_df.reset_index(inplace=True)
if 'Male' in output_df.columns:
if 'Female' in output_df.columns:
desired_order = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday']
output_df = output_df.set_index('WeekDay').reindex(desired_order).reset_index()
stages = output_df['WeekDay']
df_female = pd.DataFrame(dict(number=output_df['Female'], stage=stages))
df_male = pd.DataFrame(dict(number=output_df['Male'], stage=stages))
df_female['Gender'] = 'Female'
df_male['Gender'] = 'Male'
df_graph = pd.concat([df_male, df_female], axis=0)
colors = {'Male': '#2986cc', 'Female': '#c90076'}
fig2 = px.funnel(df_graph, x='number', y='stage', color='Gender', color_discrete_map=colors, title='Patient Visits by Gender and Weekday')
fig2.update_layout(
template="plotly_dark",
xaxis_title='Number of Patients',
yaxis_title='Weekday',
height=500, width=250
)
return fig2
else:
desired_order = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday']
output_df = output_df.set_index('WeekDay').reindex(desired_order).reset_index()
stages = output_df['WeekDay']
df_male = pd.DataFrame(dict(number=output_df['Male'], stage=stages))
df_male['Gender'] = 'Male'
colors = {'Male': '#2986cc', 'Female': '#c90076'}
fig2 = px.funnel(df_male, x='number', y='stage', color='Gender', color_discrete_map=colors, title='Patient Visits by Gender and Weekday')
fig2.update_layout(
template="plotly_dark",
xaxis_title='Number of Patients',
yaxis_title='Weekday',height=500, width=250)
return fig2
else:
desired_order = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday']
output_df = output_df.set_index('WeekDay').reindex(desired_order).reset_index()
stages = output_df['WeekDay']
df_female = pd.DataFrame(dict(number=output_df['Female'], stage=stages))
df_female['Gender'] = 'Female'
colors = {'Male': '#2986cc', 'Female': '#c90076'}
fig2 = px.funnel(df_female, x='number', y='stage', color='Gender', color_discrete_map=colors, title='Patient Visits by Gender and Weekday')
fig2.update_layout(
template="plotly_dark",
xaxis_title='Number of Patients',
yaxis_title='Weekday',height=500, width=250)
return fig2
def scatter_man(data):
Patient_Analysis = data[['PatientID', 'GroupedICD', 'Description', 'Age']].copy()
patients_diagnosis = Patient_Analysis[Patient_Analysis['GroupedICD'].notna()]
patients_diagnosis_info = patients_diagnosis[['PatientID', 'GroupedICD', 'Description', 'Age']]
patients_tests_info = patients_diagnosis_info[patients_diagnosis_info['Age'].notna()]
patients_tests_df = pd.DataFrame(patients_tests_info)
patients_icd_counts = patients_tests_df.groupby(['Age', 'GroupedICD','Description']).size().reset_index(name='Count')
patients_icd_counts = patients_icd_counts[patients_icd_counts['Count']> 1000]
import plotly.express as px
# sns.set(rc={"axes.facecolor":"#FFF9ED","figure.facecolor":"#FFF9ED"})
# Scatter plot
fig5 = px.scatter(patients_icd_counts, y='Age', x='Description', size='Count',
hover_name='Age', color='Count', title='Age - ICD Relationship',color_continuous_scale='ylorrd')
fig5.update_layout(template="plotly_dark",xaxis_title='ICD Code', yaxis_title='Age',coloraxis_colorbar=dict(title='Count'),
height=950, width=1400)
return fig5
def barplot_lab(df):
df = df[['PatientID','EncounterDate','ComponentName', 'GroupedICD','Description']].copy()
df.sort_values(by=['EncounterDate'], ascending=True,inplace = True)
df['DaysSinceLastVisit'] = df.groupby('PatientID')['EncounterDate'].diff().dt.days
df = df[df['DaysSinceLastVisit'] <= 7]
lab = df[df['ComponentName'].notna()].copy()
lab = lab[lab['GroupedICD'].notna()].copy()
component= lab.groupby(['ComponentName','Description']).size().reset_index(name='Count')
sss = component.sort_values(by='Count', ascending=False)[:20].copy()
fig3 = px.bar(sss, x='ComponentName', y='Count',
hover_data=['ComponentName', 'Count'], color='ComponentName', height=450, title='Lab Test')
fig3.update_xaxes(tickangle=45)
return fig3
def scatterplot(df):
df = df[['PatientID','EncounterDate','ComponentName', 'GroupedICD','Description']].copy()
df.sort_values(by=['EncounterDate'], ascending=True,inplace = True)
df['DaysSinceLastVisit'] = df.groupby('PatientID')['EncounterDate'].diff().dt.days
df = df[df['DaysSinceLastVisit'] <= 7]
lab = df[df['ComponentName'].notna()].copy()
lab = lab[lab['GroupedICD'].notna()].copy()
component= lab.groupby(['ComponentName','Description']).size().reset_index(name='Count')
component = component[component['Count']> 2000]
component['Description'].nunique()
fig = px.scatter(component, y='ComponentName', x='Description', size='Count',
hover_name='ComponentName', color='Count', title='Lab Component-ICD Relationship')
fig.update_layout(template="plotly_dark",xaxis_title='ICD Code', yaxis_title='Component Name', coloraxis_colorbar=dict(title='Count'),
height=550, width=500)
return fig
####################################### EDA ##################################################################
def histplot_6(data):
disease_data = data[['Age','LegalSex']].copy()
disease_data = disease_data[disease_data['Age'].notna() & disease_data['LegalSex'].notna()].copy()
fig = px.histogram(disease_data,
x='Age',
color='LegalSex',
nbins=10,
opacity=0.5,
title='Age Distribution by Legal Sex',
color_discrete_sequence=px.colors.qualitative.Pastel)
# Update layout to match your desired style
fig.update_layout(
title_font=dict(size=20, color='white'),
xaxis_title_font=dict(size=16, color='white'),
yaxis_title_font=dict(size=16, color='white'),
xaxis=dict(tickfont=dict(size=14, color='white')),
yaxis=dict(tickfont=dict(size=14, color='white'))
)
return fig
def histplot_7(data):
import plotly.graph_objects as go
graph3_data = data[['Age','BP Severity']].copy()
graph3_data = graph3_data[graph3_data['BP Severity'].notna()]
graph3_data = graph3_data[graph3_data['BP Severity'] != 'Unknown']
graph3_data = graph3_data[graph3_data['BP Severity'] != 'BP NORMAL']
severities = graph3_data['BP Severity'].unique()
lines = []
for severity in severities:
severity_data = graph3_data[graph3_data['BP Severity'] == severity]
age_counts = severity_data['Age'].value_counts().sort_index()
lines.append(go.Scatter(x=age_counts.index, y=age_counts.values, mode='lines+markers', name=severity))
fig = go.Figure(data=lines)
fig.update_layout(
title='Age Distribution by BP Severity',
xaxis_title='Age',
yaxis_title='Count',
title_font=dict(size=20, color='white')
)
return fig
def pie_chart_7(data):
import plotly.graph_objects as go
# Prepare data
graph_4 = data[['Depression Severity']].copy()
graph_4 = graph_4[graph_4['Depression Severity'] != 'None-minimal']
graph_4 = graph_4[graph_4['Depression Severity'] != 'Unknown']
severity_counts = graph_4['Depression Severity'].value_counts()
# Define colors
colors_inner = ['#FF5733', '#FFC300', '#36A2EB', '#C71585']
# Create plotly figure
fig = go.Figure()
# Add donut chart
fig.add_trace(go.Pie(
labels=severity_counts.index,
values=severity_counts,
hole=0.6, # Hole size for donut chart
marker=dict(colors=colors_inner),
textinfo='label+percent',
textfont=dict(size=10),
insidetextorientation='radial'
))
# Update layout for title and appearance
fig.update_layout(
title_text="Distribution of Patients by Depression",
title_font_size=20,
title_font_color='white',
# paper_bgcolor='black',
# plot_bgcolor='black',
autosize=False,
# width=500,
# height=450,
)
# Show figure
return fig
def chart_8(data):
import plotly.graph_objects as go
graph_5 = data[['BP Severity', 'BMI', 'LegalSex']].copy()
graph_5 = graph_5.dropna(subset=['BP Severity', 'BMI', 'LegalSex'])
graph_5 = graph_5[graph_5['BP Severity'] != 'Unknown']
graph_5 = graph_5[graph_5['BP Severity'] != 'BP NORMAL']
# Create box plot
fig = go.Figure()
# Add box plot traces for each gender
for gender in graph_5['LegalSex'].unique():
filtered_data = graph_5[graph_5['LegalSex'] == gender]
fig.add_trace(go.Box(
y=filtered_data['BMI'],
x=filtered_data['BP Severity'],
name=gender,
boxmean='sd', # Show mean and standard deviation
marker_color='#1f77b4' if gender == 'Male' else '#ff7f0e', # Different colors for genders
text=filtered_data['BP Severity'], # Adding text for tooltips
hoverinfo='y+name+text'
))
# Update layout with titles, axis labels, and other properties
fig.update_layout(
title='BMI by BP Severity and Legal Sex',
title_font=dict(size=20, color='white'),
xaxis_title='BP Severity',
yaxis_title='BMI',
xaxis=dict(tickfont=dict(size=14, color='white')),
yaxis=dict(tickfont=dict(size=14, color='white')),
boxmode='group', # Group box plots by BP Severity
height=600, # Set the height of the figure
width=800, # Set the width of the figure
# paper_bgcolor='#FAF5E6',
# plot_bgcolor='#FAF5E6'
)
return fig
def chart_9(data):
import plotly.graph_objects as go
disease_data = data.copy()
disease_data = disease_data.select_dtypes(include=['int64', 'float64'])
columns_to_drop = ['PatientID']
disease_data.drop(columns=columns_to_drop, inplace=True)
# Calculate the correlation matrix
corrmat = disease_data.corr()
corrmat.fillna(0, inplace=True)
# Create a heatmap using Plotly
fig = go.Figure(data=go.Heatmap(
z=corrmat.values,
x=corrmat.columns,
y=corrmat.columns,
colorscale='RdYlGn',
# colorbar=dict(title='Correlation', tickvals=[-1, 0, 1], ticktext=['-1', '0', '1']),
text=corrmat.round(2).values, # Add annotations
texttemplate="%{text:.2f}", # Format annotations
textfont=dict(size=12, color='black') # Set annotation font size and color
))
# Update layout
fig.update_layout(
title='Which Feature is Mainly Involved',
title_font=dict(size=20, color='white'),
xaxis_title='Features',
yaxis_title='Features',
xaxis=dict(tickfont=dict(size=14, color='white')),
yaxis=dict(tickfont=dict(size=14, color='white')),
height=600, # Set the height of the figure
width=800 # Set the width of the figure
)
return fig
def chart_10(data):
import plotly.express as px
import plotly.graph_objects as go
graph_7 = data.copy()
graph_7 = graph_7[graph_7['Depression Severity'] != 'None-minimal']
graph_7 = graph_7[graph_7['Depression Severity'] != 'Unknown']
graph_7['Age'] = pd.to_numeric(graph_7['Age'], errors='coerce')
graph_7 = graph_7.dropna(subset=['Age','Depression Severity','LegalSex'])
# Create the violin plot
fig = go.Figure()
for sex in graph_7['LegalSex'].unique():
fig.add_trace(go.Violin(
x=graph_7['Depression Severity'][graph_7['LegalSex'] == sex],
y=graph_7['Age'][graph_7['LegalSex'] == sex],
legendgroup=sex, scalegroup=sex, name=sex, side='negative' if sex == 'Female' else 'positive',
line_color='blue' if sex == 'Female' else 'orange'
))
# Update the layout
fig.update_layout(
title="Age by Depression Severity and Legal Sex",
xaxis_title="Depression Severity",
yaxis_title="Age",
xaxis=dict(tickmode='array', tickvals=graph_7['Depression Severity'].unique(), tickangle=20),
yaxis=dict(range=[0, 80]),
violingap=0.2, # gap between violins
violingroupgap=0.3, # gap between groups
violinmode='overlay', # plot violins over each other
font=dict(color='white', size=14),
title_font=dict(size=20, color='white'),
xaxis_tickfont=dict(size=14, color='white'),
yaxis_tickfont=dict(size=14, color='white'),
paper_bgcolor='rgba(0,0,0,0)',
plot_bgcolor='rgba(0,0,0,0)',
showlegend=True
)
return fig
def feature_analytics(disease_data):
corrmat = disease_data.corr( numeric_only = True)
corr_threshold = 0.7
selected_features = []
for column in corrmat.columns[:]:
correlated_features = corrmat.index[corrmat[column] > corr_threshold].tolist()
if correlated_features:
selected_features.extend(correlated_features)
selected_features = list(set(selected_features))
values_to_pop = ['Weight', 'DiastolicBP', 'SystolicBP', 'ComponentValue', 'Height', 'Age', 'BMI']
for value in values_to_pop:
if value in selected_features:
selected_features.remove(value)
values_to_find = ['PeakFlow', 'Temperature', 'Respiration', 'Pulse', 'SPO2']
found_values = []
l = []
m = []
not_found_values = []
for i, value in enumerate(selected_features):
if value in values_to_find:
found_values.append((i, value))
l.append(value)
else:
not_found_values.append((i, value))
m.append(value)
return l,m
def chart_11(disease_data):
import plotly.express as px
feature = feature_analytics(disease_data)
select,featurel = feature
Top_feature_Lab = select[0]
graph_8 = disease_data.copy()
graph_8 = graph_8.dropna(subset=[Top_feature_Lab, 'Age', 'LegalSex'])
# Create the scatter plot with Plotly
fig = px.scatter(
graph_8,
x=Top_feature_Lab,
y="Age",
color="LegalSex",
color_discrete_sequence=px.colors.qualitative.Set2,
title=f'Age group: {Top_feature_Lab}',
labels={Top_feature_Lab: Top_feature_Lab, 'Age': 'Age'},
size_max=200
)
# Add vertical line at the mean
mean_value = graph_8[Top_feature_Lab].mean()
fig.add_vline(x=mean_value, line=dict(color='red', dash='dash'))
# Customize the layout
fig.update_layout(
title_font=dict(size=20, color='white'),
xaxis_title_font=dict(size=16, color='white'),
yaxis_title_font=dict(size=16, color='white'),
xaxis=dict(tickangle=20, tickfont=dict(size=14, color='white')),
yaxis=dict(tickfont=dict(size=14, color='white'), range=[0, 80]),
plot_bgcolor='black',
paper_bgcolor='black'
)
return fig
def chart_12(filtered_data):
graph_10 = filtered_data.copy()
no_nan = graph_10.dropna(subset=['ImmunizationName'])
immu = list(no_nan['ImmunizationName'])
filtered_data = [item for item in immu if item and not pd.isna(item)]
unique_values = set(filtered_data)
my_string = ' '.join(unique_values)
lmao = my_string.strip(', ')
lmao = lmao.replace(',', '')
title = "Immunization Word Cloud"
cloud = WordCloud(scale=3,
max_words=150,
colormap='RdYlGn',
mask=None,
background_color='white',
stopwords=None,
collocations=True,
contour_color='black',
contour_width=1).generate(lmao)
# axes[2,2].imshow(cloud, interpolation='bilinear')
# axes[2,2].axis('off')
# axes[2,2].set_title( f'Immunization',color='white', fontsize=20)
plt.show()
def mean_of_values(cell_value):
if pd.isna(cell_value): # Check if cell value is NaN
return np.nan
values = [float(val) for val in cell_value.split(',')]
return sum(values) / len(values)
def plots(original_data):
a = original_data.copy()
st.subheader("Clustering Analysis")
col1, col2 = st.columns(2)
## 1
cluster_counts = a['cluster'].value_counts().reset_index()
cluster_counts.columns = ['cluster', 'count'] # Rename columns
fig_1 = px.bar(cluster_counts, y='cluster', x='count',
labels={'cluster': 'Cluster', 'count': 'Count'},
text_auto=True, # text_auto=True displays the count on top of the bars
color='cluster', # Assign different colors to each bar
color_continuous_scale='plasma', # Use the plasma color scale
category_orders={'cluster': [0, 1, 2, 3, 4]},
) # Set the order of clusters
custom_labels = {0: 'Cluster 0', 1: 'Cluster 1', 2: 'Cluster 2', 3: 'Cluster 3', 4: 'Cluster 4'}
fig_1.update_yaxes(tickvals=[0, 1, 2, 3, 4], ticktext=list(custom_labels.values()))
fig_1.update_layout(
title={'text': "Count of Data Points per Cluster", 'y': 0.95, 'x': 0.5, 'xanchor': 'center', 'yanchor': 'top'},
yaxis_title='Cluster', xaxis_title='Count',
xaxis=dict(showline=False, showgrid=False, zeroline=False, tickfont=dict(size=14, color='white')),
yaxis=dict(showline=False, showgrid=False, zeroline=False, tickfont=dict(size=14, color='white')),
title_font=dict(color='white', size=18),
# plot_bgcolor='black', # Background color
# paper_bgcolor='black', # Paper background color
title_x=0.5, # Center the title
legend=dict(
font=dict(size=16, color='white'),
bgcolor='rgba(0,0,0,0)'
))
col1.plotly_chart(fig_1,use_container_width=True)
## 2
fig_2 = px.scatter(a, x='Age', y='BMI',
color='cluster',
title="Cluster's Profile Based On Age And BMI",
color_continuous_scale='plasma') # Use the plasma color palette
fig_2.update_layout(
title={'text': "Cluster's Profile Based On Age And BMI", 'y': 0.95, 'x': 0.5, 'xanchor': 'center', 'yanchor': 'top'},
xaxis=dict(showgrid=False, showticklabels=False, zeroline=False),
yaxis=dict(showgrid=False, showticklabels=False, zeroline=False),
# plot_bgcolor='black', # Background color
# paper_bgcolor='black', # Paper background color
title_font=dict(color='white', size=18), # Title font color and size
margin=dict(l=20, r=20, t=40, b=20), # Set margins to make the plot more compact
legend=dict(
font=dict(size=16, color='white'),
bgcolor='rgba(0,0,0,0)'
)
)
fig_2.update_traces(marker=dict(size=12, line=dict(width=2, color='DarkSlateGrey')))
col2.plotly_chart(fig_2,use_container_width=True)
col3, col4 = st.columns(2)
## 3
palette = ['#636EFA', '#EF553B'] # Adjust the colors as needed
fig_3 = go.Figure()
for sex in a['LegalSex'].unique():
fig_3.add_trace(go.Box(
y=a[a['LegalSex'] == sex]['cluster'],
name=f'Legal Sex: {sex}',
marker_color=palette.pop(0), # Pop the first color from the palette
boxmean=True
))
fig_3.update_layout(
title={'text':"Clusters Distribution by Legal Sex", 'y': 0.95, 'x': 0.5, 'xanchor': 'center', 'yanchor': 'top'},
title_font=dict(color='white', size=18),
# plot_bgcolor='black',
# paper_bgcolor='black',
xaxis=dict(showline=False, showgrid=False, zeroline=False, tickfont=dict(size=14, color='white')),
yaxis=dict(showline=False, showgrid=False, zeroline=False, tickfont=dict(size=14, color='white')),
# plot_bgcolor='rgba(0,0,0,0)',
# paper_bgcolor='rgba(0,0,0,0)',
title_font_color='white',
showlegend=True,
legend=dict(
font=dict(size=16, color='white'),
bgcolor='rgba(0,0,0,0)'
)
)
col3.plotly_chart(fig_3,use_container_width=True)
## 4
# palette = ['#636EFA', '#EF553B', '#00CC96', '#AB63FA', '#FFA15A'] # Example palette
fig_4 = px.violin(
a,
x="BP Severity",
y="cluster",
color="BP Severity",
color_discrete_sequence=px.colors.qualitative.Vivid,
box=True, # Adds a box plot inside the violin plot for more detail
points="all", # Shows all data points
title="Clusters Distribution by BP Severity"
)
fig_4.update_layout(
title={'text':"Clusters Distribution by BP Severity", 'y': 0.95, 'x': 0.5, 'xanchor': 'center', 'yanchor': 'top'},
title_font=dict(color='white', size=18),
xaxis_title="BP Severity",
yaxis_title="Cluster",
# plot_bgcolor='black',
# paper_bgcolor='black',
xaxis_title_font=dict(size=16, color='white'),
yaxis_title_font=dict(size=16, color='white'),
xaxis=dict(showline=False, showgrid=False, zeroline=False, tickfont=dict(size=14, color='white')),
yaxis=dict(showline=False, showgrid=False, zeroline=False, tickfont=dict(size=14, color='white')),
title_font_color='white',
legend=dict(
font=dict(size=16, color='white'),
bgcolor='rgba(0,0,0,0)'
)
)
fig_4.update_xaxes(tickangle=45) # Rotate the x-axis labels for better readability
col4.plotly_chart(fig_4,use_container_width=True)
col5, col6 = st.columns(2)
## 5
fig_5 = px.histogram(a, x="Depression Severity", color="cluster",
color_discrete_sequence=px.colors.diverging.RdYlBu,
title='Clusters Distribution by Depression Severity')
# Update layout to make it more attractive
fig_5.update_layout(
title={'text':"Clusters Distribution by Depression Severity", 'y': 0.95, 'x': 0.5, 'xanchor': 'center', 'yanchor': 'top'},
title_font=dict(color='white', size=18),
# plot_bgcolor='black',
# paper_bgcolor='black',
title_font_color='white',
xaxis_title='Depression Severity',
yaxis_title='Count',
xaxis_title_font_color='white',
yaxis_title_font_color='white',
legend=dict(
font=dict(size=16, color='white'),
bgcolor='rgba(0,0,0,0)'
),
xaxis=dict(
tickfont=dict(color='white', size=14),
title_font=dict(color='white', size=16),
showline=False,
showgrid=False,
ticks=''
),
yaxis=dict(
tickfont=dict(color='white', size=14),
title_font=dict(color='white', size=16),
showline=False,
showgrid=False,
ticks=''
),
coloraxis_colorbar=dict(
tickfont=dict(color='white')
)
)
# Show the plot
col5.plotly_chart(fig_5,use_container_width=True)
## 6
fig_6 = px.violin(a, y="cluster", x="Temp_condition", box=True, points="all",
color="Temp_condition", color_discrete_sequence=px.colors.diverging.RdYlBu,
title='Clusters Distribution by Temp_condition')
# Update layout to make it more attractive
fig_6.update_layout(
title={'text':"Clusters Distribution by Temp_condition", 'y': 0.95, 'x': 0.5, 'xanchor': 'center', 'yanchor': 'top'},
title_font=dict(color='white', size=18),
# plot_bgcolor='black',
# paper_bgcolor='black',
title_font_color='white',
xaxis_title='Temp_condition',
yaxis_title='Clusters',
xaxis_title_font_color='white',
yaxis_title_font_color='white',
legend=dict(
font=dict(size=16, color='white'),
bgcolor='rgba(0,0,0,0)'
),
xaxis=dict(
tickfont=dict(color='white', size=14),
title_font=dict(color='white', size=16),
showline=False,
showgrid=False,
ticks=''
),
yaxis=dict(
tickfont=dict(color='white', size=14),
title_font=dict(color='white', size=16),
showline=False,
showgrid=False,
ticks=''
),
coloraxis_colorbar=dict(
tickfont=dict(color='white')
)
)
# Show the plot
col6.plotly_chart(fig_6,use_container_width=True)
col7, col8 = st.columns(2)
##7
# Create the stacked bar chart
ad = a.groupby(['weight_condition', 'cluster']).size().reset_index(name='count')
fig_7 = px.bar(ad,
x='weight_condition',
y='count',
color='cluster',
title='Clusters Distribution by Weight Condition',
text='count',
barmode='stack',
color_discrete_sequence=px.colors.diverging.RdYlBu) # Use a color scale or palette of your choice
# Update layout to make it more attractive and remove axes elements
fig_7.update_layout(
title={'text': 'Clusters Distribution by Weight Condition', 'y': 0.95, 'x': 0.5, 'xanchor': 'center', 'yanchor': 'top'},
title_font=dict(color='white', size=18),
xaxis=dict(
title='', # Remove x-axis title
showline=False,
showgrid=False,
zeroline=False,
tickfont=dict(size=14, color='white'),
tickangle=45 # Rotate x-axis labels for better readability
),
yaxis=dict(
title='', # Remove y-axis title
showline=False,
showgrid=False,
zeroline=False,
tickfont=dict(size=14, color='white')
),
# plot_bgcolor='black', # Background color
# paper_bgcolor='black', # Paper background color
margin=dict(l=20, r=20, t=40, b=20), # Set margins to make the plot more compact
legend=dict(
font=dict(size=16, color='white'),
bgcolor='rgba(0,0,0,0)'
)
)
# Update bar text style
fig_7.update_traces(texttemplate='%{text:.2s}', textfont_size=14, textposition='inside', marker=dict(line=dict(width=1, color='DarkSlateGrey')))
# Show the plot
col7.plotly_chart(fig_7,use_container_width=True)
## 8
fig_8 = px.box(a,
x='SPO2_condition',
y='Age',
points='all', # Show all points
title="Clusters Distribution by SPO2_condition",
color='cluster',
color_discrete_sequence=px.colors.sequential.Plasma_r)
# Update layout to remove axes titles, labels, and gridlines, and style the chart
fig_8.update_layout(
title={'text': "Clusters Distribution by SPO2_condition", 'y': 0.95, 'x': 0.5, 'xanchor': 'center', 'yanchor': 'top'},
title_font=dict(color='white', size=18),
xaxis=dict(showline=False, showgrid=False, zeroline=False, tickfont=dict(size=14, color='white')),
yaxis=dict(showline=False, showgrid=False, zeroline=False, tickfont=dict(size=14, color='white')),
# plot_bgcolor='black', # Background color
# paper_bgcolor='black', # Paper background color
margin=dict(l=20, r=20, t=40, b=20), # Set margins to make the plot more compact
legend=dict(
font=dict(size=16, color='white'),
bgcolor='rgba(0,0,0,0)'
)
)
# Customize the boxen plot appearance
fig_8.update_traces(
boxmean=True, # Add mean line
jitter=0.3, # Spread points along x-axis
marker=dict(size=10, line=dict(width=2, color='DarkSlateGrey'))
)
# Show the plot
col8.plotly_chart(fig_8,use_container_width=True)
col_11 = st.columns(1)[0]
fig_11 = px.scatter_matrix(
a[['Age', 'SystolicBP', 'Pulse', 'Weight', 'BMI', 'cluster']],
dimensions=['Age', 'SystolicBP', 'Pulse', 'Weight', 'BMI'],
color='cluster',
title="Scatter Matrix of Selected Features by Cluster",
labels={col: col for col in ['Age', 'SystolicBP', 'Pulse', 'Weight', 'BMI']},
color_continuous_scale= px.colors.diverging.Spectral
)
# Update layout for better visualization
fig_11.update_traces(diagonal_visible=True)
fig_11.update_layout(height=700, width=700, showlegend=True)
# Show the plot
col_11.plotly_chart(fig_11,use_container_width=True)
#
##### Joint Plot
st.subheader("Summary")
meanvalue_columns = [col for col in list(a.columns) if 'meanvalue' in col]
# Group data by clusters
grouped_data = a.groupby('cluster')
# Calculate mean for numerical columns
numerical_columns = a.select_dtypes(include=['number']).columns
numerical_summary = grouped_data[numerical_columns].mean()
# Calculate mode for categorical columns
categorical_columns = a.select_dtypes(include=['object', 'category','string']).columns
categorical_summary = grouped_data[categorical_columns].agg(lambda x: x.value_counts().index[0])
for i in range(len(a['cluster'].value_counts())):
# Example for Cluster 0
cluster_traits = {
"Age": numerical_summary.loc[i, 'Age'],
"Age_Category": categorical_summary.loc[i,"Age_Category"],
"SystolicBP": numerical_summary.loc[i, 'SystolicBP'],
"Depression Severity": categorical_summary.loc[i, 'Depression Severity'],
"Weight Condition" : categorical_summary.loc[i, 'weight_condition'],
"BP Severity" : categorical_summary.loc[i, 'BP Severity'],
"Pulse_condition" : categorical_summary.loc[i, 'Pulse_condition'],
"Respiration_condition" : categorical_summary.loc[i, 'Respiration_condition'],
"SPO2_condition" : categorical_summary.loc[i, 'SPO2_condition'],
}
# if numerical_summary.loc[i, 'GLUCOSE_meanvalue'] > 100:
# glucose_condition = "High frequency of patients with slightly elevated glucose levels."
# else:
# glucose_condition = "Normal glucose levels."
# Writing the summary
summary = f"""
Cluster - {i} Traits
1. Age: Average age is {round(cluster_traits['Age'])} years.
2. SystolicBP: Patients tend to have slightly elevated systolic blood pressure, averaging {cluster_traits['SystolicBP']} mmHg.
3. Depression Severity: Predominantly '{cluster_traits['Depression Severity']}'.
4. "Weight Condition" : {cluster_traits['Weight Condition']}.
5. "Respiration_condition" : {cluster_traits['Respiration_condition']}.
6. "Pulse_condition" : {cluster_traits['Pulse_condition']}.
7. "SPO2_condition" : {cluster_traits['SPO2_condition']}.
Trait Summary: Cluster {i} mainly consists of {cluster_traits['Age_Category']} individuals with {cluster_traits['Depression Severity']} depression level, {cluster_traits['BP Severity'].lower()}.
"""
st.write(summary)
st.write(round(numerical_summary[meanvalue_columns],2))
st.subheader("Density Contour Plot")
with st.container():
# Loop through the columns and create plots
for i in meanvalue_columns:
fig = px.density_contour(
a, # Replace 'a' with your actual DataFrame name
y="Age",
x=i,
color="cluster",
marginal_x="histogram",
marginal_y="histogram",
template="simple_white",
color_discrete_sequence=px.colors.qualitative.Set1
)
# Add fill to the contours for a similar effect to kde
fig.update_traces(bingroup="fill")
# Update layout for better aesthetics
fig.update_layout(
title=f"Joint Density Contour of {i} vs Age by Clusters",
yaxis_title="Age",
xaxis_title=i,
xaxis=dict(
title=i,
showline=False,
showgrid=False,
zeroline=False,
tickfont=dict(size=14, color='white'),
tickangle=45, # Rotate x-axis labels for better readability
titlefont=dict(size=16, color='white') # Set x-axis title to white
),
yaxis=dict(
title='Age',
showline=False,
showgrid=False,
zeroline=False,
tickfont=dict(size=14, color='white'),
titlefont=dict(size=16, color='white') # Set y-axis title to white
),
plot_bgcolor='black',
paper_bgcolor='black',
title_font_color='white',
legend_title="Clusters",
width=1500, # Adjust width as needed
height=800 # Increase height to make the plot taller
)
# Display the plot using st.plotly_chart within a column
st.plotly_chart(fig, use_container_width=True)
def ML(filtered_data, scaler):
man = filtered_data.copy()
man=man.dropna()
man.drop(columns=['PatientID','VisitID'],inplace=True)
numerical_columns = list(man.select_dtypes(include=['int', 'float']).columns)
categorial_columns = list(man.select_dtypes(exclude=['int', 'float','datetime']).columns)
categorical_indexes = []
for c in categorial_columns:
categorical_indexes.append(man.columns.get_loc(c))
t = man.shape
# st.write(t)
if 5 < t[0] < 10:
ki = 3
elif t[0] <= 4 :
ki = 1
else:
ki = 4
kproto = KPrototypes(n_clusters= ki, init='Huang', n_init = 25, random_state=42)
kproto.fit_predict(man, categorical= categorical_indexes)
cluster_labels = kproto.labels_
original_numeric_data = scaler.inverse_transform(man[numerical_columns])
# Convert back to DataFrame and add cluster labels
original_data = pd.DataFrame(original_numeric_data, columns=numerical_columns)
original_data["cluster"] = cluster_labels
original_data["cluster"] = original_data["cluster"].astype('category')
## PCA Graph
pca = PCA(n_components=4)
pca_df = pca.fit_transform(original_data[numerical_columns])
d = list(original_data[numerical_columns].columns)
pca_df = pd.DataFrame(pca_df, columns=d[:4])
import plotly.graph_objects as go
st.subheader("PCA")
fig_9 = go.Figure(
go.Scatter3d(mode='markers',
x = pca_df.iloc[:, 0],
y = pca_df.iloc[:, 1],
z = pca_df.iloc[:, 2],
marker=dict(size = 4, color = original_data['cluster'], colorscale = 'spectral')
)
)
fig_9.update_layout(
scene=dict(
xaxis_title=d[0],
yaxis_title=d[1],
zaxis_title=d[2],
# bgcolor='black', # Background color inside the 3D plot
xaxis=dict(color='white'), # Axis label color
yaxis=dict(color='white'),
zaxis=dict(color='white')
),
# plot_bgcolor='black', # Background color outside the 3D plot
# paper_bgcolor='black' # Paper (entire plot area) background color
)
col9 = st.columns(1)[0]
col9.plotly_chart(fig_9, use_container_width=True)
mann = man[categorial_columns].copy()
orig = original_data.reset_index(drop=True)
mann = mann.reset_index(drop=True)
original_data = pd.concat([orig, mann], axis=1)
return plots(original_data)
def imputer(filtered_data):
# numeric_columns = filtered_data.select_dtypes(include=['int', 'float'])
# numeric_columns = numeric_columns.iloc[:,2:].copy()
# # Setting the random_state argument for reproducibility
# imputer = IterativeImputer(random_state=42)
# imputed = imputer.fit_transform(numeric_columns)
# Imputed_data = pd.DataFrame(imputed, columns=numeric_columns.columns)
# Imputed_data = round(Imputed_data, 2)
# columns_drop = Imputed_data.columns
# filtered_data = filtered_data.drop(columns=columns_drop)
# Ml_data = pd.concat([filtered_data, Imputed_data], axis=1)
# unscaled_data = Ml_data.copy()
##Scaling
Ml_data = filtered_data.copy()
scaled_data = Ml_data.select_dtypes(include=['int', 'float'])
scaled_data = scaled_data.iloc[:,2:].copy()
scaler = StandardScaler()
scaler.fit(scaled_data)
scaled_data = pd.DataFrame(scaler.transform(scaled_data),columns= scaled_data.columns)
columns_drop = scaled_data.columns
Ml_data = Ml_data.drop(columns=columns_drop)
Ml_data = pd.concat([Ml_data, scaled_data], axis=1)
Ml_data = Ml_data.convert_dtypes() # change this to outlier_removed if you want outliwer to be removed
return ML(Ml_data, scaler)
# @st.cache_data()
# def fetch_data_1():
# data = pd.read_parquet(local_file_1)
# return data
if analysis_option == 'Machine Learning':
f_problem = ['Hypertensive diseases', 'General symptoms', 'Digestive, abdomen symptoms', 'Other dorsopathies', 'Metabolic disorders', 'Health service encounters', 'Diabetes mellitus', 'Chronic lower resp', 'Obesity, hyperalimentation', 'Body mass index (BMI)', 'Communicable hazards', 'Other viral diseases', 'Eyelid, lacrimal disorders', 'Male genital diseases', 'Unclassified pain, Other dorsopathies, Other dorsopathies', 'Circ, resp symptoms', 'Unclassified pain', 'Anticoagulant use', 'Influenza, pneumonia', 'Soft tissue disorders', 'Urinary symptoms', 'Other risk factors', 'Blood exam findings', 'Nutritional disorders', 'Other joint disorders', 'Mycoses', 'Other skin disorders', 'Other health encounters', 'Maternal disorders', 'Reproduction services', 'Other obstetric conditions', 'Gestation weeks', 'Oral, salivary diseases', 'Family, personal hazards', 'Respiratory interstitial diseases', 'Mood disorders', 'Arthrosis', 'Nutritional anaemias', 'Intestinal diseases', 'Med, surg care complications', 'Skin, tissue symptoms', 'Neurotic disorders', 'High-risk pregnancy', 'Female genital disorders', 'Urine exam findings', 'Other joint disorders, Other joint disorders', 'Socioeconomic hazards', 'Maternal care, delivery issues', 'Aplastic anaemias', 'Sexual trans infections', 'Substance use disorders', 'Oesoph, stomach diseases', 'Behavioural syndromes', 'Preg-related disorders', 'Gallbladder, pancreas', 'Pregnancy outcomes', 'Imaging, function findings', 'Episodic disorders', 'Other resp diseases', 'Nervous, musculo symptoms', 'Other dorsopathies, Unclassified pain', 'Spondylopathies', 'External ear diseases', 'Other ear disorders', 'Dermatitis, eczema', 'Polyneuropathies', 'Urinary system diseases', 'Unclassified pain, Other dorsopathies', 'Benign neoplasms', 'Diabetes mellitus, Renal failure', 'Renal failure', 'Thyroid disorders', 'Cognition, emotion symptoms', 'Paralytic syndromes', 'Unclassified pain, Other joint disorders', 'Bone density disorders', 'Other heart diseases', 'Ischaemic heart diseases', 'Delivery', 'Other digestive disorders', 'Viral skin lesions', 'Breast disorders', 'Cerebrovascular diseases', 'Male genital malig', 'Animal force exposures', 'Urolithiasis', 'Erectile dysfunction', 'Other land accidents', 'Visual disturbances', 'Other resp disorders', 'Skin appendage disorders', 'Upper resp infections', 'Benign neoplasms, Benign neoplasms', 'Neurotic disorders, Mood disorders', 'Maternal disorders, Digestive, abdomen symptoms', 'Puerperium complications', 'Childhood disorders', 'Thorax injuries', 'Other eye disorders', 'Conjunctiva disorders, Other resp diseases', 'Conjunctiva disorders', 'Synovium, tendon disorders', 'Renal tubulo diseases', 'Liver diseases', 'Blood alcohol level', 'Labour, delivery complications', 'Family, personal hazards, Family, personal hazards', 'Unspecified trunk injuries', 'Skin infections', 'Pelvic inflammatory diseases', 'Labour complications', 'Unclassified pain, Other joint disorders, Other joint disorders', 'Hernia', 'Vein, lymph disorders', 'Other CNS disorders', 'Blood disorders', 'Renal hypertension', 'Endocrine disorders', 'Infectious agents', 'Specific health procedures', 'Papulosquamous disorders', 'Muscle disorders', 'Schizophrenia disorders', 'Pleura diseases', 'Ocular muscle disorders', 'Other exam findings', 'Intest infect diseases', 'Female genital disorders, Family, personal hazards', 'Middle ear diseases', 'Kidney, ureter disorders', 'Benign neoplasms, Maternal care, delivery issues', 'Pulmonary heart disease', 'Aplastic anaemias, Renal failure', 'Speech, voice symptoms', 'Unspecified behavior neoplasms', 'Soft tissue disorders, Soft tissue disorders', 'Other joint disorders, Unclassified pain, Other joint disorders', 'Viral hepatitis', 'Unclassified pain, Soft tissue disorders', 'In situ neoplasms', 'Chlamydia diseases', 'Unclassified pain, Soft tissue disorders, Soft tissue disorders', 'Haemolytic anaemias', 'Lens disorders', 'Head injuries', 'Nerve disorders', 'Neurotic disorders, Neurotic disorders', 'Other effects', 'Thyroid disorders, Other obstetric conditions', 'Maternal care, delivery issues, Maternal care, delivery issues', 'Polyarthropathies', 'Enteritis, colitis', 'Female genital disorders, Maternal disorders', 'Personality disorders', 'Vitreous, globe disorders', 'Musculoskeletal malformations', 'Abdomen, lumbar injuries', 'Neck injuries', 'Dorsopathies', 'Male genital diseases, Urinary symptoms', 'Glaucoma', 'Knee, lower leg injuries', 'Gestation, growth issues', 'Skin, tissue symptoms, Skin, tissue symptoms', 'Coagulation disorders, Other obstetric conditions', 'Coagulation disorders', 'Immune disorders', 'Diabetes mellitus, Metabolic disorders', 'Circulatory disorders', 'Artery diseases', 'Movement disorders', 'Circulatory malformations', 'Skin malig', 'Maternal disorders, Urinary symptoms', 'General symptoms, General symptoms', 'Breast cancer', 'Urinary malformations', 'Viral hepatitis, Other obstetric conditions', 'Lower resp infections', 'Elbow, forearm injuries', 'Health service encounters, Family, personal hazards', 'Sexual trans infections, Other obstetric conditions', 'CNS malformations', 'Glucose disorders', 'Arthrosis, Arthrosis', 'Digestive organ malig', 'Connective tissue disorders', 'Specified arthritis', 'Genital malformations', 'Myoneural, muscle diseases', 'Other obstetric conditions, Sexual trans infections', 'Sclera, cornea disorders', 'Wrist, hand injuries', 'Renal failure, Diabetes mellitus', 'Hypertensive diseases, Circ, resp symptoms', 'Diabetes mellitus, Other skin disorders', 'Chromosomal abnormalities', 'Unspecified mental disorder', 'Infectious agents, Oesoph, stomach diseases', 'Oesoph, stomach diseases, Oesoph, stomach diseases', 'Respiratory malig', 'Organic mental disorders, Degenerative CNS diseases', 'Med, surg care complications, Family, personal hazards', 'Unclassified pain, Breast disorders', 'Health service encounters, Other health encounters', 'Digestive, abdomen symptoms, Digestive, abdomen symptoms', 'Mechanical force exposures', 'Pregnancy outcomes, Specific health procedures', 'Organic mental disorders, Head injuries', 'Radiation skin disorders']
problem = ['Hypertensive diseases', 'General symptoms', 'Digestive, abdomen symptoms', 'Other dorsopathies', 'Metabolic disorders', 'Health service encounters', 'Diabetes mellitus', 'Chronic lower resp', 'Obesity, hyperalimentation', 'Body mass index (BMI)', 'Communicable hazards', 'Other viral diseases', 'Eyelid, lacrimal disorders', 'Male genital diseases', 'Unclassified pain, Other dorsopathies, Other dorsopathies', 'Circ, resp symptoms', 'Unclassified pain', 'Anticoagulant use', 'Influenza, pneumonia', 'Soft tissue disorders', 'Urinary symptoms', 'Other risk factors', 'Blood exam findings', 'Nutritional disorders', 'Other joint disorders', 'Mycoses', 'Other skin disorders', 'Other health encounters', 'Maternal disorders', 'Reproduction services', 'Other obstetric conditions', 'Gestation weeks', 'Oral, salivary diseases', 'Family, personal hazards', 'Respiratory interstitial diseases', 'Mood disorders', 'Arthrosis', 'Nutritional anaemias', 'Intestinal diseases', 'Med, surg care complications', 'Skin, tissue symptoms', 'Neurotic disorders', 'High-risk pregnancy', 'Female genital disorders', 'Urine exam findings', 'Other joint disorders, Other joint disorders', 'Socioeconomic hazards', 'Maternal care, delivery issues', 'Aplastic anaemias', 'Sexual trans infections', 'Substance use disorders', 'Oesoph, stomach diseases', 'Behavioural syndromes', 'Preg-related disorders', 'Gallbladder, pancreas', 'Pregnancy outcomes', 'Imaging, function findings', 'Episodic disorders', 'Other resp diseases', 'Nervous, musculo symptoms', 'Other dorsopathies, Unclassified pain', 'Spondylopathies', 'External ear diseases', 'Other ear disorders', 'Dermatitis, eczema', 'Polyneuropathies', 'Urinary system diseases', 'Unclassified pain, Other dorsopathies', 'Benign neoplasms', 'Diabetes mellitus, Renal failure', 'Renal failure', 'Thyroid disorders', 'Cognition, emotion symptoms', 'Paralytic syndromes', 'Unclassified pain, Other joint disorders', 'Bone density disorders', 'Other heart diseases', 'Ischaemic heart diseases', 'Delivery', 'Other digestive disorders', 'Viral skin lesions', 'Breast disorders', 'Cerebrovascular diseases', 'Male genital malig', 'Animal force exposures', 'Urolithiasis', 'Erectile dysfunction', 'Other land accidents', 'Visual disturbances', 'Other resp disorders', 'Skin appendage disorders', 'Upper resp infections', 'Benign neoplasms, Benign neoplasms', 'Neurotic disorders, Mood disorders', 'Maternal disorders, Digestive, abdomen symptoms', 'Puerperium complications', 'Childhood disorders', 'Thorax injuries', 'Other eye disorders', 'Conjunctiva disorders, Other resp diseases', 'Conjunctiva disorders', 'Synovium, tendon disorders', 'Renal tubulo diseases', 'Liver diseases', 'Blood alcohol level', 'Labour, delivery complications', 'Family, personal hazards, Family, personal hazards', 'Unspecified trunk injuries', 'Skin infections', 'Pelvic inflammatory diseases', 'Labour complications', 'Unclassified pain, Other joint disorders, Other joint disorders', 'Hernia', 'Vein, lymph disorders', 'Other CNS disorders', 'Blood disorders', 'Endocrine disorders', 'Infectious agents', 'Specific health procedures', 'Papulosquamous disorders', 'Muscle disorders', 'Schizophrenia disorders', 'Pleura diseases', 'Ocular muscle disorders', 'Other exam findings', 'Intest infect diseases', 'Middle ear diseases', 'Kidney, ureter disorders', 'Benign neoplasms, Maternal care, delivery issues', 'Pulmonary heart disease', 'Aplastic anaemias, Renal failure', 'Speech, voice symptoms', 'Unspecified behavior neoplasms', 'Soft tissue disorders, Soft tissue disorders', 'Other joint disorders, Unclassified pain, Other joint disorders', 'Viral hepatitis', 'Unclassified pain, Soft tissue disorders', 'Chlamydia diseases', 'Unclassified pain, Soft tissue disorders, Soft tissue disorders', 'Haemolytic anaemias', 'Lens disorders', 'Head injuries', 'Nerve disorders', 'Neurotic disorders, Neurotic disorders', 'Other effects', 'Maternal care, delivery issues, Maternal care, delivery issues', 'Polyarthropathies', 'Enteritis, colitis', 'Female genital disorders, Maternal disorders', 'Personality disorders', 'Vitreous, globe disorders', 'Musculoskeletal malformations', 'Abdomen, lumbar injuries', 'Neck injuries', 'Dorsopathies', 'Male genital diseases, Urinary symptoms', 'Glaucoma', 'Knee, lower leg injuries', 'Gestation, growth issues', 'Skin, tissue symptoms, Skin, tissue symptoms', 'Coagulation disorders, Other obstetric conditions', 'Coagulation disorders', 'Immune disorders', 'Diabetes mellitus, Metabolic disorders', 'Circulatory disorders', 'Artery diseases', 'Movement disorders', 'Circulatory malformations', 'Skin malig', 'General symptoms, General symptoms', 'Breast cancer', 'Urinary malformations', 'Viral hepatitis, Other obstetric conditions', 'Lower resp infections', 'Elbow, forearm injuries', 'Health service encounters, Family, personal hazards', 'Sexual trans infections, Other obstetric conditions', 'CNS malformations', 'Glucose disorders', 'Arthrosis, Arthrosis', 'Connective tissue disorders', 'Specified arthritis', 'Genital malformations', 'Myoneural, muscle diseases', 'Other obstetric conditions, Sexual trans infections', 'Sclera, cornea disorders', 'Wrist, hand injuries', 'Renal failure, Diabetes mellitus', 'Hypertensive diseases, Circ, resp symptoms', 'Diabetes mellitus, Other skin disorders', 'Chromosomal abnormalities', 'Unspecified mental disorder', 'Infectious agents, Oesoph, stomach diseases', 'Oesoph, stomach diseases, Oesoph, stomach diseases', 'Respiratory malig', 'Organic mental disorders, Degenerative CNS diseases', 'Med, surg care complications, Family, personal hazards', 'Unclassified pain, Breast disorders', 'Digestive, abdomen symptoms, Digestive, abdomen symptoms', 'Mechanical force exposures', 'Radiation skin disorders']
st.subheader("_Select Disease_:sunglasses:")
health_option = st.selectbox("_Select Disease_:sunglasses:",[*problem], label_visibility="collapsed")
repo_id = "Akankshg/ML_DATA"
filename_1 = f'imputed_scaled_data/{health_option}.parquet'
token = os.environ["HUGGING_FACE_HUB_TOKEN"]
local_file_1 = hf_hub_download(repo_id=repo_id, filename=filename_1,repo_type="dataset", token=token)
filtered_data = pd.read_parquet(local_file_1)
imputer(filtered_data)
# if filtered_data['key_lab2'].notna().any():
# column_list = ['PatientID', 'VisitID', 'GroupedICD'] + list(filtered_data['key_lab2'].iloc[0])
# pivot_data = pd.pivot_table(filtered_data, values='ComponentValue', index=['PatientID', 'VisitID', 'GroupedICD'], columns='ComponentName', aggfunc=lambda x: ', '.join(map(str, x)))
# pivot_data = pivot_data.reset_index(drop=False)
# pivot_data = pivot_data[column_list].copy()
# filtered_data = pd.merge(filtered_data, pivot_data, on=['PatientID', 'VisitID','GroupedICD'], how='left')
# filtered_data.iloc[:, -20:] = filtered_data.iloc[:, -20:].convert_dtypes()
# hmm = pd.DataFrame()
# # num_columns = 20
# num_columns = len(list(filtered_data['key_lab2'].iloc[0]))
# for i in range(1, num_columns+1):
# existing_column = filtered_data.columns[-i]
# new_column_name = f'{existing_column}_meanvalue'
# hmm[new_column_name] = filtered_data[existing_column].apply(mean_of_values)
# filtered_data = pd.concat([filtered_data, hmm], axis=1)
# column_list = [
# ## Necessary columns
# 'PatientID', 'VisitID', 'GroupedICD',
# ## Numerical values
# 'Age', 'SystolicBP',
# 'DiastolicBP','Temperature',
# 'Pulse', 'Weight', 'Height', 'BMI', 'Respiration',
# 'SPO2', 'PHQ_9Score',
# # 'PeakFlow'
# ## Categorial Values
# 'LegalSex','BPLocation', 'BPPosition', 'PregnancyStatus', 'LactationStatus', 'TemperatureSource',
# 'Age_Category','BP Severity','Depression Severity','weight_condition', 'Temp_condition', 'Pulse_condition',
# 'Respiration_condition', 'SPO2_condition', 'PeakF_condition']
# # last = list(filtered_data.columns[-20:])
# last = list(hmm.columns)
# required_columns = column_list + last
# filtered_data = filtered_data[required_columns].copy()
# filtered_data = filtered_data.drop_duplicates().reset_index(drop=True)
# filtered_data = filtered_data.dropna(axis=1, how='all')
# imputer(filtered_data)
def word_cloud(data):
no_nan = data.dropna(subset=['ImmunizationName'])
immu = list(no_nan['ImmunizationName'])
filtered_data = [item for item in immu if item and not pd.isna(item)]
unique_values = set(filtered_data)
my_string = ' '.join(unique_values)
lmao = my_string.strip(', ')
lmao = lmao.replace(',', '')
cloud = WordCloud(
scale=3,
max_words=150,
colormap='RdYlGn',
mask=None,
background_color='white',
stopwords=None,
collocations=True,
contour_color='black',
contour_width=1
).generate(lmao)
# Create a Matplotlib figure
fig, ax = plt.subplots(figsize=(10, 6))
ax.imshow(cloud, interpolation='bilinear')
ax.axis('off') # Remove the axes
ax.set_title('Immunization Word Cloud', color='black', fontsize=20)
# Return the figure to be used in Streamlit
return fig
def more_scatter(data):
component_icd_counts = data.groupby(['ComponentName', 'GroupedICD','Description']).size().reset_index(name='Count')
component_icd_counts = component_icd_counts[component_icd_counts['Count']> 900]
import plotly.express as px
# Scatter plot
fig16 = px.scatter(component_icd_counts, y='ComponentName', x='Description', size='Count',
hover_name='ComponentName', color='Count', title='Lab Component-ICD Relationship',color_continuous_scale='YlOrBr')
fig16.update_layout(template="plotly_dark",xaxis_title='ICD Code', yaxis_title='Component Name', coloraxis_colorbar=dict(title='Count'))
return fig16
if analysis_option == 'Data':
age_min = int(data['Age'].min())
age_max = int(data['Age'].max())
age_range = st.sidebar.slider('Select Age Range', age_min, age_max, (age_min, age_max))
data = data[(data['Age'] >= age_range[0]) & (data['Age'] <= age_range[1])].copy()
Sex = data.groupby('LegalSex')['PatientID'].nunique().reset_index(name='count')
st.subheader("Distribution of Patient's by Sex", divider='rainbow')
col1, col2,col3 = st.columns(3)
col1.metric(label="Male", value = Sex[Sex['LegalSex']=='Male']['count'][1])
col2.metric(label="Female", value = Sex[Sex['LegalSex']=='Female']['count'][0])
col4, col5 = st.columns(2)
fig2 = funnel_chart(data)
col4.plotly_chart(fig2, use_container_width=True)
fig = scatterplot(data)
col5.plotly_chart(fig, use_container_width=True)
col6 = st.columns(1)[0]
fig_man = scatter_man(data)
col6.plotly_chart(fig_man, use_container_width=True)
fig16 = more_scatter(data)
col8 = st.columns(1)[0]
col8.plotly_chart(fig16, use_container_width=True)
st.dataframe(data.head(20).style.format({'PatientID': "{:.0f}"}))
if analysis_option == 'EDA':
problem = ['Health service encounters', 'Diabetes mellitus', 'Chronic lower resp', 'Obesity, hyperalimentation', 'Body mass index (BMI)', 'Eyelid, lacrimal disorders', 'Communicable hazards', 'Hypertensive diseases', 'Soft tissue disorders', 'Urinary symptoms', 'Metabolic disorders', 'Falls', 'Other risk factors', 'Nutritional disorders', 'General symptoms', 'Blood exam findings', 'Other joint disorders', 'Mycoses', 'Other dorsopathies', 'Other skin disorders', 'Diabetes mellitus, Obesity, hyperalimentation', 'Maternal disorders', 'Reproduction services', 'Circ, resp symptoms', 'Other obstetric conditions', 'Gestation weeks', 'Oral, salivary diseases', 'Family, personal hazards', 'Respiratory interstitial diseases', 'Mood disorders', 'Arthrosis', 'Nutritional anaemias', 'Intestinal diseases', 'High-risk pregnancy', 'Female genital disorders', 'Substance use disorders', 'Aplastic anaemias', 'Behavioural syndromes', 'Preg-related disorders', 'Newborn problems', 'Labor,delivery complications', 'Maternal care, delivery issues', 'Neurotic disorders', 'Imaging, function findings', 'Episodic disorders', 'Other resp diseases', 'Unclassified pain', 'Nervous, musculo symptoms', 'Other dorsopathies, Unclassified pain', 'External ear diseases', 'Other ear disorders', 'Dermatitis, eczema', 'Urinary system diseases', 'Digestive, abdomen symptoms', 'Oesoph, stomach diseases', 'Unclassified pain, Other dorsopathies', 'Benign neoplasms', 'Diabetes mellitus, Renal failure', 'Renal failure', 'Cognition, emotion symptoms', 'Paralytic syndromes', 'Unclassified pain, Other joint disorders', 'Bone density disorders', 'Other heart diseases', 'Anticoagulant use', 'Ischaemic heart diseases', 'Delivery', 'Polyneuropathies', 'Other land accidents', 'Other resp disorders', 'Viral skin lesions', 'Skin appendage disorders', 'Other health encounters', 'Other joint disorders, Other joint disorders', 'Renal tubulo diseases', 'Sexual trans infections', 'Socioeconomic hazards', 'Childhood disorders', 'Malnutrition', 'Blood alcohol level', 'Skin, tissue symptoms', 'Pelvic inflammatory diseases', 'Maternal disorders, Digestive, abdomen symptoms', 'Labour complications', 'Thyroid disorders', 'Pregnancy outcomes', 'Unclassified pain, Other joint disorders, Other joint disorders', 'Hernia', 'Other dorsopathies, Soft tissue disorders', 'Liver diseases', 'Vein, lymph disorders', 'Other CNS disorders', 'Blood disorders', 'Renal hypertension', 'Poisoning', 'Conjunctiva disorders', 'Visual disturbances', 'Infectious agents', 'Muscle disorders', 'Fetal, newborn conditions', 'Ocular muscle disorders', 'Middle ear diseases', 'Developmental disorders', 'Urticaria, erythema', 'Neurotic disorders, Mood disorders', 'Intest infect diseases', 'Acne', 'Imaging, function findings, Family, personal hazards', 'Soft tissue disorders, Soft tissue disorders', 'Spondylopathies', 'Specific health procedures', 'Med, surg care complications', 'Unspecified trunk injuries', 'Vein, lymph disorders, Liver diseases', 'Urine exam findings', 'Infectious agents, Other obstetric conditions', 'Other exam findings', 'In situ neoplasms', 'Chlamydia diseases', 'Lens disorders', 'Head injuries', 'Upper resp infections', 'Viral hepatitis', 'Unclassified pain, Soft tissue disorders, Soft tissue disorders', 'Female genital disorders, Maternal disorders', 'Gallbladder, pancreas, Maternal disorders', 'Gallbladder, pancreas', 'Peritoneal diseases', 'Schizophrenia disorders', 'Mental retardation', 'Other eye disorders', 'Breast disorders', 'Musculoskeletal malformations', 'Multi-region injuries', 'Abdomen, lumbar injuries', 'Endocrine disorders', 'Male genital diseases', 'Puerperium complications', 'Sexual trans infections, Maternal disorders', 'Maternal care, delivery issues, Maternal care, delivery issues', 'Haemolytic anaemias', 'Glaucoma', 'Skin infections', 'Polyarthropathies', 'Nerve disorders', 'Papulosquamous disorders', 'Supplementary factors', 'Hypertensive crisis', 'Cerebrovascular diseases', 'Organic mental disorders', 'Degenerative CNS diseases, Organic mental disorders', 'Degenerative CNS diseases', 'Kidney, ureter disorders', 'Immune disorders', 'Erectile dysfunction', 'Circulatory disorders', 'Pleura diseases', 'Hypertensive diseases, Other heart diseases', 'Infectious agents, Pelvic inflammatory diseases', 'Other digestive disorders', 'Speech, voice symptoms', 'Urolithiasis', 'Pulmonary heart disease', 'Enteritis, colitis', 'Thorax injuries', 'Neck injuries', 'Circulatory malformations', 'Coagulation disorders', 'Other effects', 'Artery diseases', 'Influenza, pneumonia', 'Knee, lower leg injuries', 'Dentofacial anomalies', 'Male genital diseases, Urinary symptoms', 'Coagulation disorders, Other obstetric conditions', 'General symptoms, General symptoms', 'Puerperium complications, General symptoms', 'Other dorsopathies, Other obstetric conditions', 'Breast cancer', 'Other joint disorders, Unclassified pain, Other joint disorders', 'Synovium, tendon disorders', 'Toxic effects', 'Other dorsopathies, Other dorsopathies', 'Shoulder, upper arm injuries', 'Other osteopathies', 'Urinary malformations', 'Skin, tissue symptoms, Skin, tissue symptoms', 'Uncertain neoplasms', 'Lower resp infections', 'Conjunctiva disorders, Other resp diseases', 'Elbow, forearm injuries', 'Hypertensive diseases, Other heart diseases, Renal failure', 'Aplastic anaemias, Renal failure', 'Other exam findings, Other exam findings', 'Dorsopathies', 'Maternal disorders, General symptoms', 'Assault', 'Infestations', 'Inner ear diseases', 'Sexual trans infections, Other obstetric conditions', 'Foreign body effects', 'Diabetes mellitus, Artery diseases', 'Emergency U07.1 use', 'Renal failure, Hypertensive diseases', 'Infectious agents, Other resp diseases', 'Female genital disorders, Family, personal hazards', 'Diabetes mellitus, Metabolic disorders', 'Health service encounters, Family, personal hazards', 'Unclassified pain, Other dorsopathies, Other dorsopathies', 'Urinary tract malig', 'Labour, delivery complications', 'Arthrosis, Arthrosis', 'Animal force exposures', 'Gestation, growth issues', 'Genetic susceptibility to neoplasms, Genetic carrier, Genetic susceptibility to neoplasms, Genetic carrier', 'Digestive organ malig', 'Unspecified malig, Unspecified malig', 'Connective tissue disorders', 'Maternal disorders, Urinary symptoms', 'Nerve disorders, Maternal disorders', 'Infectious agents, Maternal disorders', 'Other viral diseases', 'Movement disorders', 'Viral hepatitis, Other obstetric conditions', 'Family, personal hazards, Family, personal hazards', 'Lymphoid, haematopoietic malig', 'Other obstetric conditions, Sexual trans infections', 'Male sexual dysfunction', 'Eye, ear malformations', 'Choroid, retina disorders', 'Gestation weeks, Maternal care, delivery issues', 'Maternal care, delivery issues, Gestation weeks', 'Female genital disorders, Med, surg care complications', 'Other bact diseases', 'General symptoms, Maternal disorders', 'Specified arthritis', 'Movement disorders, Poisoning', 'Female genital malig', 'Systemic atrophies, CNS malformations, Eye, ear malformations, Other malformations, Liver diseases, Mental retardation', 'Breast disorders, Breast disorders', 'Other resp disorders, Other resp disorders', 'Emergency U09.9 use', 'Sclera, cornea disorders', 'Skin infections, Skin infections', 'Perinatal resp, cardio disorders', 'Oesoph, stomach diseases, Circ, resp symptoms', 'Renal failure, Diabetes mellitus', 'Ankle, foot injuries', 'Other malformations', 'Skin malig', 'Unspecified behavior neoplasms', 'Intestinal diseases, Poisoning', 'Musculoskeletal disorders', 'Helminthiases', 'Childhood disorders, Cognition, emotion symptoms', 'Chondropathies', 'Renal tubulo diseases, Male genital diseases', 'Digestive, abdomen symptoms, Digestive, abdomen symptoms, Digestive, abdomen symptoms', 'Bone density disorders, Bone density disorders', 'HIV disease', 'Tuberculosis', 'Other bact diseases, Labour, delivery complications', 'Estrogen receptor status', 'Breast cancer, Estrogen receptor status', 'Infectious agents, Oesoph, stomach diseases', 'Chromosomal abnormalities', 'Female genital disorders, Female genital disorders', 'CNS inflammatory diseases', 'Blood exam findings, Infectious agents', 'Blood exam findings, Blood exam findings', 'Unspecified mental disorder', 'Behavioural syndromes, Unspecified mental disorder', 'Respiratory malig', 'Respiratory malig, Unspecified malig', 'Organic mental disorders, Degenerative CNS diseases', 'Unknown causes of death', 'General symptoms, Mood disorders', 'Genital malformations', 'Maternal care, delivery issues, Genital malformations', 'Unclassified pain, Soft tissue disorders', 'Wrist, hand injuries', 'Viral skin lesions, Other obstetric conditions', 'Poisoning, Circ, resp symptoms', 'Vitreous, globe disorders', 'Health service encounters, Other risk factors', 'Med, surg care complications, Family, personal hazards', 'Optic nerve disorders', 'Diabetes mellitus, Other CNS disorders', 'Postpartum complications', 'Middle ear diseases, Middle ear diseases', 'CNS malformations', 'Genetic carrier status', 'Diabetes mellitus, Urine exam findings', 'Circ, resp symptoms, General symptoms', 'Arthropod-borne fevers', 'Unclassified pain, Breast disorders', 'Soft tissue disorders, Unclassified pain', 'Appendix diseases', 'Neurotic disorders, Behavioural syndromes', 'Renal failure, Renal failure', 'Glucose disorders', 'Sexual trans infections, Sexual trans infections', 'Cognition, emotion symptoms, General symptoms', 'Diabetes mellitus, Other skin disorders', 'Digestive, abdomen symptoms, Digestive, abdomen symptoms', 'Cerebrovascular diseases, Speech, voice symptoms', 'Neurotic disorders, Socioeconomic hazards', 'Other obstetric conditions, Other dorsopathies', 'Other digestive disorders, Family, personal hazards', 'Neurotic disorders, Neurotic disorders', 'Episodic disorders, Episodic disorders', 'Polyarthropathies, Soft tissue disorders', 'Other bact diseases, Urinary system diseases', 'Demyelinating diseases', 'Personality disorders', 'Hip, thigh injuries', 'Renal failure, Aplastic anaemias', 'Gestation, growth issues, Gestation, growth issues', 'Other obstetric conditions, Mycoses', 'Hazardous exposures', 'Thorax injuries, Thorax injuries', 'Elbow, forearm injuries, Elbow, forearm injuries', 'Other spirochaetal dis', 'Diabetes mellitus, Diabetes mellitus', 'Burns, corrosions', 'Oesoph, stomach diseases, Oesoph, stomach diseases', 'Other joint disorders, Soft tissue disorders', 'Other bact diseases, General symptoms', 'Early trauma complications', 'Mechanical force exposures', 'Male genital malig', 'Ocular muscle disorders, Ocular muscle disorders', 'Skin, tissue symptoms, General symptoms', 'Glomerular diseases', 'Infectious agents, Upper resp infections', 'Urine exam findings, Other obstetric conditions', 'Polyarthropathies, Polyarthropathies', 'Benign neoplasms, Maternal care, delivery issues', 'Thyroid malig', 'Genital malformations, Maternal care, delivery issues', 'Infectious arthropathies', 'Pregnancy outcomes, Specific health procedures', 'Female genital disorders, Maternal care, delivery issues', 'Cleft lip, palate', 'Unspecified malig', 'Cognition, emotion symptoms, Mood disorders', 'Liver diseases, Other skin disorders', 'Jaw diseases', 'Substance use disorders, Other obstetric conditions', 'Other skin disorders, Socioeconomic hazards', 'Organic mental disorders, Head injuries', 'Skin infections, Unspecified trunk injuries', 'Specific health procedures, Family, personal hazards', 'Mycoses, Mycoses, Mycoses', 'Maternal disorders, Circ, resp symptoms', 'Oral, salivary diseases, Family, personal hazards', 'Mycoses, Poisoning', 'Family, personal hazards, Family, personal hazards, Family, personal hazards', 'Pedestrian accidents', 'Lung diseases', 'Sequelae of infections', 'Ocular muscle disorders, Ocular muscle disorders, Ocular muscle disorders', 'Self-harm', 'Hypertensive diseases, Renal failure', 'Infectious agents, Other resp disorders', 'Polyarthropathies, Toxic effects', 'Mycoses, Diabetes mellitus', 'Protozoal diseases', 'Other obstetric conditions, Soft tissue disorders', 'Wrist, hand injuries, Self-harm', 'Hip, thigh injuries, Animal force exposures', 'Chronic rheumatic heart', 'Diabetes mellitus, Vitreous, globe disorders', 'Vein, lymph disorders, Other skin disorders', 'Synovium, tendon disorders, Synovium, tendon disorders', 'Radiation skin disorders', 'Choroid, retina disorders, Family, personal hazards', 'Eyelid, lacrimal disorders, Eyelid, lacrimal disorders', 'Family, personal hazards, Nutritional anaemias, Other digestive disorders', 'Infectious agents, Conjunctiva disorders', 'Neurotic disorders, Nervous, musculo symptoms', 'Glucose regulation', 'Other skin disorders, Vein, lymph disorders', 'Cognition, emotion symptoms, Cognition, emotion symptoms', 'Eye, organ burns', 'Immune disorders, Pulmonary heart disease', 'Digestive, abdomen symptoms, Poisoning', 'Movement disorders, Nutritional anaemias', 'Soft tissue disorders, Soft tissue disorders, Soft tissue disorders, Soft tissue disorders', 'Bicycle accidents', 'Chronic lower resp, Chronic lower resp', 'Digestive malformations', 'Multiple burns', 'External prosthetics', 'Myoneural, muscle diseases', 'Soft tissue disorders, Polyarthropathies', 'Other obstetric conditions, Urine exam findings', 'Thyroid disorders, Other obstetric conditions', 'Thyroid disorders, Thyroid disorders', 'Blood exam findings, Poisoning', 'Other skin disorders, Diabetes mellitus', 'Assault by sharp object', 'Other resp diseases, Other resp diseases', 'Mood disorders, Neurotic disorders', 'Multiple burns, Heat, hot exposures', 'Lower resp conditions']
st.subheader("_Select Disease_:sunglasses:")
health_option = st.selectbox("_Select Disease_:sunglasses:",[*problem], label_visibility="collapsed")
repo_id = "Akankshg/ML_DATA"
filename = f'disease_data_EDA/{health_option}.parquet'
token = os.environ["HUGGING_FACE_HUB_TOKEN"]
local_file = hf_hub_download(repo_id=repo_id, filename=filename, repo_type="dataset",token=token)
health_data = pd.read_parquet(local_file)
Sex = health_data.groupby('LegalSex')['PatientID'].nunique().reset_index(name='count')
st.subheader(f"Patients for '{health_option}' by Sex", divider='rainbow')
col1, col2, col3 = st.columns(3)
if 'Male' in Sex['LegalSex'].values:
col1.metric(label="Male", value=Sex[Sex['LegalSex'] == 'Male']['count'].iloc[0])
else:
col1.metric(label="Male", value=0)
if 'Female' in Sex['LegalSex'].values:
col2.metric(label="Female", value=Sex[Sex['LegalSex'] == 'Female']['count'].iloc[0])
else:
col2.metric(label="Male", value=0)
col4, col5 = st.columns(2)
fig2 = funnel_chart(health_data)
col4.plotly_chart(fig2, use_container_width=True)
fig3 = barplot_lab(health_data)
col5.plotly_chart(fig3, use_container_width=True)
col6, col7 = st.columns(2)
fig4 = histplot_6(health_data)
col6.plotly_chart(fig4, use_container_width=True)
fig5 = histplot_7(health_data)
col7.plotly_chart(fig5, use_container_width=True)
col8, col9 = st.columns(2)
fig6 = pie_chart_7(health_data)
col8.plotly_chart(fig6, use_container_width=True)
fig7 = chart_8(health_data)
col9.plotly_chart(fig7, use_container_width=True)
col10, col11 = st.columns(2)
fig8 = chart_9(health_data)
col10.plotly_chart(fig8, use_container_width=True)
fig9 = chart_10(health_data)
col11.plotly_chart(fig9, use_container_width=True)
col12, col13 = st.columns(2)
fig10 = chart_11(health_data)
col12.plotly_chart(fig10, use_container_width=True)
fig11 = word_cloud(health_data)
col13.pyplot(fig11, use_container_width=True)
st.dataframe(health_data.head(20).style.format({'PatientID': "{:.0f}"}))
# Initialize Google Gemini or any other Google API client using the key
if analysis_option == 'Health Care Chat Bot AI':
##//////start here just add paitnet + vital information.
# data = pd.read_parquet('Health-Data-3.parquet')
google_api_key = os.environ.get("google_key")
llm = GoogleGemini(api_key=google_api_key)
pandas_ai = SmartDataframe(data, config={"llm": llm, "response_parser": StreamlitResponse,"verbose": True})
pandas_ai_2 = SmartDataframe(data, config={"llm": llm,"verbose": True}) ## string
# Streamlit app title and description
st.title("AI-Powered Data Analysis App")
st.write("This application allows you to interact with your dataset using natural language prompts. Just ask a question, and the AI will provide insights based on your data.")
# Display the dataset
st.subheader("Dataset Preview")
st.dataframe(data.head())
# User input for natural language prompt
prompt = st.text_input("Enter your prompt:", placeholder="e.g., What are the top diagnoses?")
# Process the input and display the result
if st.button("Submit"):
if 'plot' in prompt or 'graph' in prompt or 'PLOT' in prompt or 'Graph' in prompt:
try:
result = pandas_ai.chat(prompt)
st.subheader("Result")
except KeyError as e:
st.error(f"Error: {e}. Unable to retrieve result.")
elif prompt:
try:
result = pandas_ai_2.chat(prompt)
st.subheader("Result")
st.write(result)
except KeyError as e:
st.error(f"Error: {e}. Unable to retrieve result.")
else:
st.warning("Please enter a prompt.")
# Add a footer
st.write("Powered by PandasAI and Google Gemini.")
|