Spaces:
Sleeping
Sleeping
File size: 5,818 Bytes
360a42b aa0eeb0 360a42b aa0eeb0 360a42b aa0eeb0 360a42b aa0eeb0 360a42b aa0eeb0 360a42b aa0eeb0 360a42b aa0eeb0 360a42b aa0eeb0 360a42b aa0eeb0 360a42b aa0eeb0 360a42b aa0eeb0 360a42b aa0eeb0 360a42b aa0eeb0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
import streamlit as st
import random
import pandas as pd
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
from huggingface_hub import login, whoami
# Title and description
st.title("Space Turtle 101 Demo")
st.markdown(
"""
This demo generates adversarial prompts based on a bias category and country/region.
The model (meta-llama/Llama-3.2-1B-Instruct) is gated. Please enter your Hugging Face API token below to access it.
"""
)
# -------------------------------
# Sidebar: Hugging Face API Token Input & Auto Login
# -------------------------------
hf_token = st.sidebar.text_input("Enter your Hugging Face API Token", type="password")
if hf_token:
try:
login(token=hf_token)
user_info = whoami()
st.sidebar.success(f"Logged in as: {user_info['name']}")
except Exception as e:
st.sidebar.error(f"Login failed: {e}")
hf_token = None
# -------------------------------
# Device Selection: CUDA > MPS > CPU
# -------------------------------
def get_device():
if torch.cuda.is_available():
return "cuda"
elif torch.backends.mps.is_available():
return "mps"
else:
return "cpu"
# -------------------------------
# Function: Load Model with Caching
# -------------------------------
@st.cache_resource(show_spinner=True)
def load_model(hf_token):
device = get_device()
# Load the gated base model with your token
base_model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-3.2-1B-Instruct",
trust_remote_code=True,
torch_dtype=torch.float16,
use_auth_token=hf_token
)
# Load the tokenizer from your adapter repo and set the pad token
tokenizer = AutoTokenizer.from_pretrained(
"Akash190104/space_turtle_101",
use_fast=False,
use_auth_token=hf_token
)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
# Load the LoRA adapter with the token
model = PeftModel.from_pretrained(
base_model,
"Akash190104/space_turtle_101",
use_auth_token=hf_token
)
model.to(device)
return model, tokenizer, device
if not hf_token:
st.warning("Please enter your Hugging Face API Token in the sidebar to load the model.")
else:
with st.spinner("Loading model, please wait..."):
model, tokenizer, device = load_model(hf_token)
st.success("Model loaded successfully!")
# -------------------------------
# Generation helper function
# -------------------------------
def generate_sample(prompt_text):
inputs = tokenizer(prompt_text, return_tensors="pt", padding=True).to(device)
with torch.inference_mode():
outputs = model.generate(
**inputs,
max_new_tokens=150,
do_sample=True,
temperature=0.7,
top_p=0.9
)
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
return generated_text
# -------------------------------
# Define bias and country lists
# -------------------------------
biases = [
"Socio-economic bias", "Gender bias", "Caste bias", "Religious bias", "Ethnic bias", "Age bias",
"Regional stereotyping", "Language discrimination", "Political bias", "Educational bias",
"Occupational bias", "Disability bias", "Appearance-based bias", "Colorism", "Nationality bias",
"Urban-rural bias", "Immigration bias"
]
countries = [
"China", "India", "Philippines", "Vietnam", "Southeast Asia", "Europe", "Nigeria", "United States",
"Mexico", "Canada", "Germany", "France", "Brazil", "South Africa", "Russia", "Japan", "South Korea",
"Australia", "Middle East", "Latin America", "Eastern Europe", "Bangladesh", "Pakistan", "Indonesia",
"Turkey", "Egypt", "Kenya", "Argentina"
]
# -------------------------------
# Streamlit UI: Demo Modes
# -------------------------------
mode = st.radio("Select Mode", ("Interactive", "Random Generation (10 samples)"))
if mode == "Interactive":
st.subheader("Interactive Mode")
bias_input = st.text_input("Bias Category", "")
country_input = st.text_input("Country/Region", "")
if st.button("Generate Sample"):
if bias_input.strip() == "" or country_input.strip() == "":
st.error("Please provide both a bias category and a country/region.")
else:
prompt = f"```{bias_input} in {country_input}```\n"
generated = generate_sample(prompt)
st.markdown("**Generated Output:**")
st.text_area("", value=generated, height=200)
st.download_button("Download Output", generated, file_name="output.txt")
elif mode == "Random Generation (10 samples)":
st.subheader("Random Generation Mode")
if st.button("Generate 10 Random Samples"):
results = []
for _ in range(10):
bias = random.choice(biases)
country = random.choice(countries)
prompt = f"```{bias} in {country}```\n"
generated = generate_sample(prompt)
results.append({"prompt": prompt, "generated": generated})
for i, res in enumerate(results):
st.markdown(f"**Sample {i+1}:**")
st.text_area("Prompt", value=res["prompt"], height=50)
st.text_area("Output", value=res["generated"], height=150)
df = pd.DataFrame(results)
csv = df.to_csv(index=False).encode("utf-8")
st.download_button("Download All Samples (CSV)", csv, file_name="samples.csv", mime="text/csv") |