Spaces:
Sleeping
Sleeping
Commit
·
3054b3b
1
Parent(s):
aa0eeb0
test the login error
Browse files
app.py
CHANGED
@@ -6,19 +6,26 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
6 |
from peft import PeftModel
|
7 |
from huggingface_hub import login, whoami
|
8 |
|
9 |
-
# Title and description
|
10 |
st.title("Space Turtle 101 Demo")
|
11 |
st.markdown(
|
12 |
"""
|
13 |
This demo generates adversarial prompts based on a bias category and country/region.
|
14 |
-
The model (meta-llama/Llama-3.2-1B-Instruct) is gated.
|
15 |
"""
|
16 |
)
|
17 |
|
18 |
# -------------------------------
|
19 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
# -------------------------------
|
21 |
-
hf_token = st.sidebar.text_input("Enter your Hugging Face API Token", type="password")
|
22 |
if hf_token:
|
23 |
try:
|
24 |
login(token=hf_token)
|
@@ -27,6 +34,8 @@ if hf_token:
|
|
27 |
except Exception as e:
|
28 |
st.sidebar.error(f"Login failed: {e}")
|
29 |
hf_token = None
|
|
|
|
|
30 |
|
31 |
# -------------------------------
|
32 |
# Device Selection: CUDA > MPS > CPU
|
@@ -52,7 +61,7 @@ def load_model(hf_token):
|
|
52 |
torch_dtype=torch.float16,
|
53 |
use_auth_token=hf_token
|
54 |
)
|
55 |
-
# Load the tokenizer from your adapter
|
56 |
tokenizer = AutoTokenizer.from_pretrained(
|
57 |
"Akash190104/space_turtle_101",
|
58 |
use_fast=False,
|
@@ -61,7 +70,7 @@ def load_model(hf_token):
|
|
61 |
if tokenizer.pad_token is None:
|
62 |
tokenizer.pad_token = tokenizer.eos_token
|
63 |
|
64 |
-
# Load the LoRA adapter
|
65 |
model = PeftModel.from_pretrained(
|
66 |
base_model,
|
67 |
"Akash190104/space_turtle_101",
|
@@ -71,76 +80,82 @@ def load_model(hf_token):
|
|
71 |
return model, tokenizer, device
|
72 |
|
73 |
if not hf_token:
|
74 |
-
st.warning("Please enter your Hugging Face API Token
|
75 |
else:
|
76 |
with st.spinner("Loading model, please wait..."):
|
77 |
-
|
78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
do_sample=True,
|
90 |
-
temperature=0.7,
|
91 |
-
top_p=0.9
|
92 |
-
)
|
93 |
-
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
94 |
-
return generated_text
|
95 |
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
"Occupational bias", "Disability bias", "Appearance-based bias", "Colorism", "Nationality bias",
|
103 |
-
"Urban-rural bias", "Immigration bias"
|
104 |
-
]
|
105 |
-
countries = [
|
106 |
-
"China", "India", "Philippines", "Vietnam", "Southeast Asia", "Europe", "Nigeria", "United States",
|
107 |
-
"Mexico", "Canada", "Germany", "France", "Brazil", "South Africa", "Russia", "Japan", "South Korea",
|
108 |
-
"Australia", "Middle East", "Latin America", "Eastern Europe", "Bangladesh", "Pakistan", "Indonesia",
|
109 |
-
"Turkey", "Egypt", "Kenya", "Argentina"
|
110 |
-
]
|
111 |
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
|
|
6 |
from peft import PeftModel
|
7 |
from huggingface_hub import login, whoami
|
8 |
|
|
|
9 |
st.title("Space Turtle 101 Demo")
|
10 |
st.markdown(
|
11 |
"""
|
12 |
This demo generates adversarial prompts based on a bias category and country/region.
|
13 |
+
The base model (meta-llama/Llama-3.2-1B-Instruct) is gated.
|
14 |
"""
|
15 |
)
|
16 |
|
17 |
# -------------------------------
|
18 |
+
# Retrieve HF Token from secrets or user input
|
19 |
+
# -------------------------------
|
20 |
+
if "HF_TOKEN" in st.secrets:
|
21 |
+
hf_token = st.secrets["HF_TOKEN"]
|
22 |
+
st.sidebar.info("Using token from secrets.")
|
23 |
+
else:
|
24 |
+
hf_token = st.sidebar.text_input("Enter your Hugging Face API Token", type="password")
|
25 |
+
|
26 |
+
# -------------------------------
|
27 |
+
# Login if token is provided
|
28 |
# -------------------------------
|
|
|
29 |
if hf_token:
|
30 |
try:
|
31 |
login(token=hf_token)
|
|
|
34 |
except Exception as e:
|
35 |
st.sidebar.error(f"Login failed: {e}")
|
36 |
hf_token = None
|
37 |
+
else:
|
38 |
+
st.sidebar.warning("Please enter your Hugging Face API Token.")
|
39 |
|
40 |
# -------------------------------
|
41 |
# Device Selection: CUDA > MPS > CPU
|
|
|
61 |
torch_dtype=torch.float16,
|
62 |
use_auth_token=hf_token
|
63 |
)
|
64 |
+
# Load the tokenizer from your adapter repository and set pad token if needed
|
65 |
tokenizer = AutoTokenizer.from_pretrained(
|
66 |
"Akash190104/space_turtle_101",
|
67 |
use_fast=False,
|
|
|
70 |
if tokenizer.pad_token is None:
|
71 |
tokenizer.pad_token = tokenizer.eos_token
|
72 |
|
73 |
+
# Load the LoRA adapter using your token
|
74 |
model = PeftModel.from_pretrained(
|
75 |
base_model,
|
76 |
"Akash190104/space_turtle_101",
|
|
|
80 |
return model, tokenizer, device
|
81 |
|
82 |
if not hf_token:
|
83 |
+
st.warning("Please enter your Hugging Face API Token to load the model.")
|
84 |
else:
|
85 |
with st.spinner("Loading model, please wait..."):
|
86 |
+
try:
|
87 |
+
model, tokenizer, device = load_model(hf_token)
|
88 |
+
st.success("Model loaded successfully!")
|
89 |
+
except Exception as e:
|
90 |
+
st.error(f"Model loading failed: {e}")
|
91 |
+
st.error("Ensure your token has access to meta-llama/Llama-3.2-1B-Instruct.")
|
92 |
+
st.stop()
|
93 |
+
|
94 |
+
# -------------------------------
|
95 |
+
# Generation helper function
|
96 |
+
# -------------------------------
|
97 |
+
def generate_sample(prompt_text):
|
98 |
+
inputs = tokenizer(prompt_text, return_tensors="pt", padding=True).to(device)
|
99 |
+
with torch.inference_mode():
|
100 |
+
outputs = model.generate(
|
101 |
+
**inputs,
|
102 |
+
max_new_tokens=150,
|
103 |
+
do_sample=True,
|
104 |
+
temperature=0.7,
|
105 |
+
top_p=0.9
|
106 |
+
)
|
107 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
108 |
+
return generated_text
|
109 |
|
110 |
+
# -------------------------------
|
111 |
+
# Define bias and country lists
|
112 |
+
# -------------------------------
|
113 |
+
biases = [
|
114 |
+
"Socio-economic bias", "Gender bias", "Caste bias", "Religious bias", "Ethnic bias", "Age bias",
|
115 |
+
"Regional stereotyping", "Language discrimination", "Political bias", "Educational bias",
|
116 |
+
"Occupational bias", "Disability bias", "Appearance-based bias", "Colorism", "Nationality bias",
|
117 |
+
"Urban-rural bias", "Immigration bias"
|
118 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
|
120 |
+
countries = [
|
121 |
+
"China", "India", "Philippines", "Vietnam", "Southeast Asia", "Europe", "Nigeria", "United States",
|
122 |
+
"Mexico", "Canada", "Germany", "France", "Brazil", "South Africa", "Russia", "Japan", "South Korea",
|
123 |
+
"Australia", "Middle East", "Latin America", "Eastern Europe", "Bangladesh", "Pakistan", "Indonesia",
|
124 |
+
"Turkey", "Egypt", "Kenya", "Argentina"
|
125 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
|
127 |
+
# -------------------------------
|
128 |
+
# Streamlit UI: Demo Modes
|
129 |
+
# -------------------------------
|
130 |
+
mode = st.radio("Select Mode", ("Interactive", "Random Generation (10 samples)"))
|
131 |
|
132 |
+
if mode == "Interactive":
|
133 |
+
st.subheader("Interactive Mode")
|
134 |
+
bias_input = st.text_input("Bias Category", "")
|
135 |
+
country_input = st.text_input("Country/Region", "")
|
136 |
+
if st.button("Generate Sample"):
|
137 |
+
if bias_input.strip() == "" or country_input.strip() == "":
|
138 |
+
st.error("Please provide both a bias category and a country/region.")
|
139 |
+
else:
|
140 |
+
prompt = f"```{bias_input} in {country_input}```\n"
|
141 |
+
generated = generate_sample(prompt)
|
142 |
+
st.markdown("**Generated Output:**")
|
143 |
+
st.text_area("", value=generated, height=200)
|
144 |
+
st.download_button("Download Output", generated, file_name="output.txt")
|
145 |
+
elif mode == "Random Generation (10 samples)":
|
146 |
+
st.subheader("Random Generation Mode")
|
147 |
+
if st.button("Generate 10 Random Samples"):
|
148 |
+
results = []
|
149 |
+
for _ in range(10):
|
150 |
+
bias = random.choice(biases)
|
151 |
+
country = random.choice(countries)
|
152 |
+
prompt = f"```{bias} in {country}```\n"
|
153 |
+
generated = generate_sample(prompt)
|
154 |
+
results.append({"prompt": prompt, "generated": generated})
|
155 |
+
for i, res in enumerate(results):
|
156 |
+
st.markdown(f"**Sample {i+1}:**")
|
157 |
+
st.text_area("Prompt", value=res["prompt"], height=50)
|
158 |
+
st.text_area("Output", value=res["generated"], height=150)
|
159 |
+
df = pd.DataFrame(results)
|
160 |
+
csv = df.to_csv(index=False).encode("utf-8")
|
161 |
+
st.download_button("Download All Samples (CSV)", csv, file_name="samples.csv", mime="text/csv")
|