Spaces:
Sleeping
Sleeping
Commit
·
7117863
1
Parent(s):
10ed4f8
Minor fix
Browse files
export.py
ADDED
@@ -0,0 +1,686 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import contextlib
|
3 |
+
import json
|
4 |
+
import os
|
5 |
+
import platform
|
6 |
+
import re
|
7 |
+
import subprocess
|
8 |
+
import sys
|
9 |
+
import time
|
10 |
+
import warnings
|
11 |
+
from pathlib import Path
|
12 |
+
|
13 |
+
import pandas as pd
|
14 |
+
import torch
|
15 |
+
from torch.utils.mobile_optimizer import optimize_for_mobile
|
16 |
+
|
17 |
+
FILE = Path(__file__).resolve()
|
18 |
+
ROOT = FILE.parents[0] # YOLO root directory
|
19 |
+
if str(ROOT) not in sys.path:
|
20 |
+
sys.path.append(str(ROOT)) # add ROOT to PATH
|
21 |
+
if platform.system() != 'Windows':
|
22 |
+
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
|
23 |
+
|
24 |
+
from models.experimental import attempt_load, End2End
|
25 |
+
from models.yolo import ClassificationModel, Detect, DDetect, DualDetect, DualDDetect, DetectionModel, SegmentationModel
|
26 |
+
from utils.dataloaders import LoadImages
|
27 |
+
from utils.general import (LOGGER, Profile, check_dataset, check_img_size, check_requirements, check_version,
|
28 |
+
check_yaml, colorstr, file_size, get_default_args, print_args, url2file, yaml_save)
|
29 |
+
from utils.torch_utils import select_device, smart_inference_mode
|
30 |
+
|
31 |
+
MACOS = platform.system() == 'Darwin' # macOS environment
|
32 |
+
|
33 |
+
|
34 |
+
def export_formats():
|
35 |
+
# YOLO export formats
|
36 |
+
x = [
|
37 |
+
['PyTorch', '-', '.pt', True, True],
|
38 |
+
['TorchScript', 'torchscript', '.torchscript', True, True],
|
39 |
+
['ONNX', 'onnx', '.onnx', True, True],
|
40 |
+
['ONNX END2END', 'onnx_end2end', '_end2end.onnx', True, True],
|
41 |
+
['OpenVINO', 'openvino', '_openvino_model', True, False],
|
42 |
+
['TensorRT', 'engine', '.engine', False, True],
|
43 |
+
['CoreML', 'coreml', '.mlmodel', True, False],
|
44 |
+
['TensorFlow SavedModel', 'saved_model', '_saved_model', True, True],
|
45 |
+
['TensorFlow GraphDef', 'pb', '.pb', True, True],
|
46 |
+
['TensorFlow Lite', 'tflite', '.tflite', True, False],
|
47 |
+
['TensorFlow Edge TPU', 'edgetpu', '_edgetpu.tflite', False, False],
|
48 |
+
['TensorFlow.js', 'tfjs', '_web_model', False, False],
|
49 |
+
['PaddlePaddle', 'paddle', '_paddle_model', True, True],]
|
50 |
+
return pd.DataFrame(x, columns=['Format', 'Argument', 'Suffix', 'CPU', 'GPU'])
|
51 |
+
|
52 |
+
|
53 |
+
def try_export(inner_func):
|
54 |
+
# YOLO export decorator, i..e @try_export
|
55 |
+
inner_args = get_default_args(inner_func)
|
56 |
+
|
57 |
+
def outer_func(*args, **kwargs):
|
58 |
+
prefix = inner_args['prefix']
|
59 |
+
try:
|
60 |
+
with Profile() as dt:
|
61 |
+
f, model = inner_func(*args, **kwargs)
|
62 |
+
LOGGER.info(f'{prefix} export success ✅ {dt.t:.1f}s, saved as {f} ({file_size(f):.1f} MB)')
|
63 |
+
return f, model
|
64 |
+
except Exception as e:
|
65 |
+
LOGGER.info(f'{prefix} export failure ❌ {dt.t:.1f}s: {e}')
|
66 |
+
return None, None
|
67 |
+
|
68 |
+
return outer_func
|
69 |
+
|
70 |
+
|
71 |
+
@try_export
|
72 |
+
def export_torchscript(model, im, file, optimize, prefix=colorstr('TorchScript:')):
|
73 |
+
# YOLO TorchScript model export
|
74 |
+
LOGGER.info(f'\n{prefix} starting export with torch {torch.__version__}...')
|
75 |
+
f = file.with_suffix('.torchscript')
|
76 |
+
|
77 |
+
ts = torch.jit.trace(model, im, strict=False)
|
78 |
+
d = {"shape": im.shape, "stride": int(max(model.stride)), "names": model.names}
|
79 |
+
extra_files = {'config.txt': json.dumps(d)} # torch._C.ExtraFilesMap()
|
80 |
+
if optimize: # https://pytorch.org/tutorials/recipes/mobile_interpreter.html
|
81 |
+
optimize_for_mobile(ts)._save_for_lite_interpreter(str(f), _extra_files=extra_files)
|
82 |
+
else:
|
83 |
+
ts.save(str(f), _extra_files=extra_files)
|
84 |
+
return f, None
|
85 |
+
|
86 |
+
|
87 |
+
@try_export
|
88 |
+
def export_onnx(model, im, file, opset, dynamic, simplify, prefix=colorstr('ONNX:')):
|
89 |
+
# YOLO ONNX export
|
90 |
+
check_requirements('onnx')
|
91 |
+
import onnx
|
92 |
+
|
93 |
+
LOGGER.info(f'\n{prefix} starting export with onnx {onnx.__version__}...')
|
94 |
+
f = file.with_suffix('.onnx')
|
95 |
+
|
96 |
+
output_names = ['output0', 'output1'] if isinstance(model, SegmentationModel) else ['output0']
|
97 |
+
if dynamic:
|
98 |
+
dynamic = {'images': {0: 'batch', 2: 'height', 3: 'width'}} # shape(1,3,640,640)
|
99 |
+
if isinstance(model, SegmentationModel):
|
100 |
+
dynamic['output0'] = {0: 'batch', 1: 'anchors'} # shape(1,25200,85)
|
101 |
+
dynamic['output1'] = {0: 'batch', 2: 'mask_height', 3: 'mask_width'} # shape(1,32,160,160)
|
102 |
+
elif isinstance(model, DetectionModel):
|
103 |
+
dynamic['output0'] = {0: 'batch', 1: 'anchors'} # shape(1,25200,85)
|
104 |
+
|
105 |
+
torch.onnx.export(
|
106 |
+
model.cpu() if dynamic else model, # --dynamic only compatible with cpu
|
107 |
+
im.cpu() if dynamic else im,
|
108 |
+
f,
|
109 |
+
verbose=False,
|
110 |
+
opset_version=opset,
|
111 |
+
do_constant_folding=True,
|
112 |
+
input_names=['images'],
|
113 |
+
output_names=output_names,
|
114 |
+
dynamic_axes=dynamic or None)
|
115 |
+
|
116 |
+
# Checks
|
117 |
+
model_onnx = onnx.load(f) # load onnx model
|
118 |
+
onnx.checker.check_model(model_onnx) # check onnx model
|
119 |
+
|
120 |
+
# Metadata
|
121 |
+
d = {'stride': int(max(model.stride)), 'names': model.names}
|
122 |
+
for k, v in d.items():
|
123 |
+
meta = model_onnx.metadata_props.add()
|
124 |
+
meta.key, meta.value = k, str(v)
|
125 |
+
onnx.save(model_onnx, f)
|
126 |
+
|
127 |
+
# Simplify
|
128 |
+
if simplify:
|
129 |
+
try:
|
130 |
+
cuda = torch.cuda.is_available()
|
131 |
+
check_requirements(('onnxruntime-gpu' if cuda else 'onnxruntime', 'onnx-simplifier>=0.4.1'))
|
132 |
+
import onnxsim
|
133 |
+
|
134 |
+
LOGGER.info(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...')
|
135 |
+
model_onnx, check = onnxsim.simplify(model_onnx)
|
136 |
+
assert check, 'assert check failed'
|
137 |
+
onnx.save(model_onnx, f)
|
138 |
+
except Exception as e:
|
139 |
+
LOGGER.info(f'{prefix} simplifier failure: {e}')
|
140 |
+
return f, model_onnx
|
141 |
+
|
142 |
+
|
143 |
+
@try_export
|
144 |
+
def export_onnx_end2end(model, im, file, simplify, topk_all, iou_thres, conf_thres, device, labels, prefix=colorstr('ONNX END2END:')):
|
145 |
+
# YOLO ONNX export
|
146 |
+
check_requirements('onnx')
|
147 |
+
import onnx
|
148 |
+
LOGGER.info(f'\n{prefix} starting export with onnx {onnx.__version__}...')
|
149 |
+
f = os.path.splitext(file)[0] + "-end2end.onnx"
|
150 |
+
batch_size = 'batch'
|
151 |
+
|
152 |
+
dynamic_axes = {'images': {0 : 'batch', 2: 'height', 3:'width'}, } # variable length axes
|
153 |
+
|
154 |
+
output_axes = {
|
155 |
+
'num_dets': {0: 'batch'},
|
156 |
+
'det_boxes': {0: 'batch'},
|
157 |
+
'det_scores': {0: 'batch'},
|
158 |
+
'det_classes': {0: 'batch'},
|
159 |
+
}
|
160 |
+
dynamic_axes.update(output_axes)
|
161 |
+
model = End2End(model, topk_all, iou_thres, conf_thres, None ,device, labels)
|
162 |
+
|
163 |
+
output_names = ['num_dets', 'det_boxes', 'det_scores', 'det_classes']
|
164 |
+
shapes = [ batch_size, 1, batch_size, topk_all, 4,
|
165 |
+
batch_size, topk_all, batch_size, topk_all]
|
166 |
+
|
167 |
+
torch.onnx.export(model,
|
168 |
+
im,
|
169 |
+
f,
|
170 |
+
verbose=False,
|
171 |
+
export_params=True, # store the trained parameter weights inside the model file
|
172 |
+
opset_version=12,
|
173 |
+
do_constant_folding=True, # whether to execute constant folding for optimization
|
174 |
+
input_names=['images'],
|
175 |
+
output_names=output_names,
|
176 |
+
dynamic_axes=dynamic_axes)
|
177 |
+
|
178 |
+
# Checks
|
179 |
+
model_onnx = onnx.load(f) # load onnx model
|
180 |
+
onnx.checker.check_model(model_onnx) # check onnx model
|
181 |
+
for i in model_onnx.graph.output:
|
182 |
+
for j in i.type.tensor_type.shape.dim:
|
183 |
+
j.dim_param = str(shapes.pop(0))
|
184 |
+
|
185 |
+
if simplify:
|
186 |
+
try:
|
187 |
+
import onnxsim
|
188 |
+
|
189 |
+
print('\nStarting to simplify ONNX...')
|
190 |
+
model_onnx, check = onnxsim.simplify(model_onnx)
|
191 |
+
assert check, 'assert check failed'
|
192 |
+
except Exception as e:
|
193 |
+
print(f'Simplifier failure: {e}')
|
194 |
+
|
195 |
+
# print(onnx.helper.printable_graph(onnx_model.graph)) # print a human readable model
|
196 |
+
onnx.save(model_onnx,f)
|
197 |
+
print('ONNX export success, saved as %s' % f)
|
198 |
+
return f, model_onnx
|
199 |
+
|
200 |
+
|
201 |
+
@try_export
|
202 |
+
def export_openvino(file, metadata, half, prefix=colorstr('OpenVINO:')):
|
203 |
+
# YOLO OpenVINO export
|
204 |
+
check_requirements('openvino-dev') # requires openvino-dev: https://pypi.org/project/openvino-dev/
|
205 |
+
import openvino.inference_engine as ie
|
206 |
+
|
207 |
+
LOGGER.info(f'\n{prefix} starting export with openvino {ie.__version__}...')
|
208 |
+
f = str(file).replace('.pt', f'_openvino_model{os.sep}')
|
209 |
+
|
210 |
+
#cmd = f"mo --input_model {file.with_suffix('.onnx')} --output_dir {f} --data_type {'FP16' if half else 'FP32'}"
|
211 |
+
#cmd = f"mo --input_model {file.with_suffix('.onnx')} --output_dir {f} {"--compress_to_fp16" if half else ""}"
|
212 |
+
half_arg = "--compress_to_fp16" if half else ""
|
213 |
+
cmd = f"mo --input_model {file.with_suffix('.onnx')} --output_dir {f} {half_arg}"
|
214 |
+
subprocess.run(cmd.split(), check=True, env=os.environ) # export
|
215 |
+
yaml_save(Path(f) / file.with_suffix('.yaml').name, metadata) # add metadata.yaml
|
216 |
+
return f, None
|
217 |
+
|
218 |
+
|
219 |
+
@try_export
|
220 |
+
def export_paddle(model, im, file, metadata, prefix=colorstr('PaddlePaddle:')):
|
221 |
+
# YOLO Paddle export
|
222 |
+
check_requirements(('paddlepaddle', 'x2paddle'))
|
223 |
+
import x2paddle
|
224 |
+
from x2paddle.convert import pytorch2paddle
|
225 |
+
|
226 |
+
LOGGER.info(f'\n{prefix} starting export with X2Paddle {x2paddle.__version__}...')
|
227 |
+
f = str(file).replace('.pt', f'_paddle_model{os.sep}')
|
228 |
+
|
229 |
+
pytorch2paddle(module=model, save_dir=f, jit_type='trace', input_examples=[im]) # export
|
230 |
+
yaml_save(Path(f) / file.with_suffix('.yaml').name, metadata) # add metadata.yaml
|
231 |
+
return f, None
|
232 |
+
|
233 |
+
|
234 |
+
@try_export
|
235 |
+
def export_coreml(model, im, file, int8, half, prefix=colorstr('CoreML:')):
|
236 |
+
# YOLO CoreML export
|
237 |
+
check_requirements('coremltools')
|
238 |
+
import coremltools as ct
|
239 |
+
|
240 |
+
LOGGER.info(f'\n{prefix} starting export with coremltools {ct.__version__}...')
|
241 |
+
f = file.with_suffix('.mlmodel')
|
242 |
+
|
243 |
+
ts = torch.jit.trace(model, im, strict=False) # TorchScript model
|
244 |
+
ct_model = ct.convert(ts, inputs=[ct.ImageType('image', shape=im.shape, scale=1 / 255, bias=[0, 0, 0])])
|
245 |
+
bits, mode = (8, 'kmeans_lut') if int8 else (16, 'linear') if half else (32, None)
|
246 |
+
if bits < 32:
|
247 |
+
if MACOS: # quantization only supported on macOS
|
248 |
+
with warnings.catch_warnings():
|
249 |
+
warnings.filterwarnings("ignore", category=DeprecationWarning) # suppress numpy==1.20 float warning
|
250 |
+
ct_model = ct.models.neural_network.quantization_utils.quantize_weights(ct_model, bits, mode)
|
251 |
+
else:
|
252 |
+
print(f'{prefix} quantization only supported on macOS, skipping...')
|
253 |
+
ct_model.save(f)
|
254 |
+
return f, ct_model
|
255 |
+
|
256 |
+
|
257 |
+
@try_export
|
258 |
+
def export_engine(model, im, file, half, dynamic, simplify, workspace=4, verbose=False, prefix=colorstr('TensorRT:')):
|
259 |
+
# YOLO TensorRT export https://developer.nvidia.com/tensorrt
|
260 |
+
assert im.device.type != 'cpu', 'export running on CPU but must be on GPU, i.e. `python export.py --device 0`'
|
261 |
+
try:
|
262 |
+
import tensorrt as trt
|
263 |
+
except Exception:
|
264 |
+
if platform.system() == 'Linux':
|
265 |
+
check_requirements('nvidia-tensorrt', cmds='-U --index-url https://pypi.ngc.nvidia.com')
|
266 |
+
import tensorrt as trt
|
267 |
+
|
268 |
+
if trt.__version__[0] == '7': # TensorRT 7 handling https://github.com/ultralytics/yolov5/issues/6012
|
269 |
+
grid = model.model[-1].anchor_grid
|
270 |
+
model.model[-1].anchor_grid = [a[..., :1, :1, :] for a in grid]
|
271 |
+
export_onnx(model, im, file, 12, dynamic, simplify) # opset 12
|
272 |
+
model.model[-1].anchor_grid = grid
|
273 |
+
else: # TensorRT >= 8
|
274 |
+
check_version(trt.__version__, '8.0.0', hard=True) # require tensorrt>=8.0.0
|
275 |
+
export_onnx(model, im, file, 12, dynamic, simplify) # opset 12
|
276 |
+
onnx = file.with_suffix('.onnx')
|
277 |
+
|
278 |
+
LOGGER.info(f'\n{prefix} starting export with TensorRT {trt.__version__}...')
|
279 |
+
assert onnx.exists(), f'failed to export ONNX file: {onnx}'
|
280 |
+
f = file.with_suffix('.engine') # TensorRT engine file
|
281 |
+
logger = trt.Logger(trt.Logger.INFO)
|
282 |
+
if verbose:
|
283 |
+
logger.min_severity = trt.Logger.Severity.VERBOSE
|
284 |
+
|
285 |
+
builder = trt.Builder(logger)
|
286 |
+
config = builder.create_builder_config()
|
287 |
+
config.max_workspace_size = workspace * 1 << 30
|
288 |
+
# config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, workspace << 30) # fix TRT 8.4 deprecation notice
|
289 |
+
|
290 |
+
flag = (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
|
291 |
+
network = builder.create_network(flag)
|
292 |
+
parser = trt.OnnxParser(network, logger)
|
293 |
+
if not parser.parse_from_file(str(onnx)):
|
294 |
+
raise RuntimeError(f'failed to load ONNX file: {onnx}')
|
295 |
+
|
296 |
+
inputs = [network.get_input(i) for i in range(network.num_inputs)]
|
297 |
+
outputs = [network.get_output(i) for i in range(network.num_outputs)]
|
298 |
+
for inp in inputs:
|
299 |
+
LOGGER.info(f'{prefix} input "{inp.name}" with shape{inp.shape} {inp.dtype}')
|
300 |
+
for out in outputs:
|
301 |
+
LOGGER.info(f'{prefix} output "{out.name}" with shape{out.shape} {out.dtype}')
|
302 |
+
|
303 |
+
if dynamic:
|
304 |
+
if im.shape[0] <= 1:
|
305 |
+
LOGGER.warning(f"{prefix} WARNING ⚠️ --dynamic model requires maximum --batch-size argument")
|
306 |
+
profile = builder.create_optimization_profile()
|
307 |
+
for inp in inputs:
|
308 |
+
profile.set_shape(inp.name, (1, *im.shape[1:]), (max(1, im.shape[0] // 2), *im.shape[1:]), im.shape)
|
309 |
+
config.add_optimization_profile(profile)
|
310 |
+
|
311 |
+
LOGGER.info(f'{prefix} building FP{16 if builder.platform_has_fast_fp16 and half else 32} engine as {f}')
|
312 |
+
if builder.platform_has_fast_fp16 and half:
|
313 |
+
config.set_flag(trt.BuilderFlag.FP16)
|
314 |
+
with builder.build_engine(network, config) as engine, open(f, 'wb') as t:
|
315 |
+
t.write(engine.serialize())
|
316 |
+
return f, None
|
317 |
+
|
318 |
+
|
319 |
+
@try_export
|
320 |
+
def export_saved_model(model,
|
321 |
+
im,
|
322 |
+
file,
|
323 |
+
dynamic,
|
324 |
+
tf_nms=False,
|
325 |
+
agnostic_nms=False,
|
326 |
+
topk_per_class=100,
|
327 |
+
topk_all=100,
|
328 |
+
iou_thres=0.45,
|
329 |
+
conf_thres=0.25,
|
330 |
+
keras=False,
|
331 |
+
prefix=colorstr('TensorFlow SavedModel:')):
|
332 |
+
# YOLO TensorFlow SavedModel export
|
333 |
+
try:
|
334 |
+
import tensorflow as tf
|
335 |
+
except Exception:
|
336 |
+
check_requirements(f"tensorflow{'' if torch.cuda.is_available() else '-macos' if MACOS else '-cpu'}")
|
337 |
+
import tensorflow as tf
|
338 |
+
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
|
339 |
+
|
340 |
+
from models.tf import TFModel
|
341 |
+
|
342 |
+
LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
|
343 |
+
f = str(file).replace('.pt', '_saved_model')
|
344 |
+
batch_size, ch, *imgsz = list(im.shape) # BCHW
|
345 |
+
|
346 |
+
tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz)
|
347 |
+
im = tf.zeros((batch_size, *imgsz, ch)) # BHWC order for TensorFlow
|
348 |
+
_ = tf_model.predict(im, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
|
349 |
+
inputs = tf.keras.Input(shape=(*imgsz, ch), batch_size=None if dynamic else batch_size)
|
350 |
+
outputs = tf_model.predict(inputs, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
|
351 |
+
keras_model = tf.keras.Model(inputs=inputs, outputs=outputs)
|
352 |
+
keras_model.trainable = False
|
353 |
+
keras_model.summary()
|
354 |
+
if keras:
|
355 |
+
keras_model.save(f, save_format='tf')
|
356 |
+
else:
|
357 |
+
spec = tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype)
|
358 |
+
m = tf.function(lambda x: keras_model(x)) # full model
|
359 |
+
m = m.get_concrete_function(spec)
|
360 |
+
frozen_func = convert_variables_to_constants_v2(m)
|
361 |
+
tfm = tf.Module()
|
362 |
+
tfm.__call__ = tf.function(lambda x: frozen_func(x)[:4] if tf_nms else frozen_func(x), [spec])
|
363 |
+
tfm.__call__(im)
|
364 |
+
tf.saved_model.save(tfm,
|
365 |
+
f,
|
366 |
+
options=tf.saved_model.SaveOptions(experimental_custom_gradients=False) if check_version(
|
367 |
+
tf.__version__, '2.6') else tf.saved_model.SaveOptions())
|
368 |
+
return f, keras_model
|
369 |
+
|
370 |
+
|
371 |
+
@try_export
|
372 |
+
def export_pb(keras_model, file, prefix=colorstr('TensorFlow GraphDef:')):
|
373 |
+
# YOLO TensorFlow GraphDef *.pb export https://github.com/leimao/Frozen_Graph_TensorFlow
|
374 |
+
import tensorflow as tf
|
375 |
+
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
|
376 |
+
|
377 |
+
LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
|
378 |
+
f = file.with_suffix('.pb')
|
379 |
+
|
380 |
+
m = tf.function(lambda x: keras_model(x)) # full model
|
381 |
+
m = m.get_concrete_function(tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype))
|
382 |
+
frozen_func = convert_variables_to_constants_v2(m)
|
383 |
+
frozen_func.graph.as_graph_def()
|
384 |
+
tf.io.write_graph(graph_or_graph_def=frozen_func.graph, logdir=str(f.parent), name=f.name, as_text=False)
|
385 |
+
return f, None
|
386 |
+
|
387 |
+
|
388 |
+
@try_export
|
389 |
+
def export_tflite(keras_model, im, file, int8, data, nms, agnostic_nms, prefix=colorstr('TensorFlow Lite:')):
|
390 |
+
# YOLOv5 TensorFlow Lite export
|
391 |
+
import tensorflow as tf
|
392 |
+
|
393 |
+
LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
|
394 |
+
batch_size, ch, *imgsz = list(im.shape) # BCHW
|
395 |
+
f = str(file).replace('.pt', '-fp16.tflite')
|
396 |
+
|
397 |
+
converter = tf.lite.TFLiteConverter.from_keras_model(keras_model)
|
398 |
+
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS]
|
399 |
+
converter.target_spec.supported_types = [tf.float16]
|
400 |
+
converter.optimizations = [tf.lite.Optimize.DEFAULT]
|
401 |
+
if int8:
|
402 |
+
from models.tf import representative_dataset_gen
|
403 |
+
dataset = LoadImages(check_dataset(check_yaml(data))['train'], img_size=imgsz, auto=False)
|
404 |
+
converter.representative_dataset = lambda: representative_dataset_gen(dataset, ncalib=100)
|
405 |
+
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
|
406 |
+
converter.target_spec.supported_types = []
|
407 |
+
converter.inference_input_type = tf.uint8 # or tf.int8
|
408 |
+
converter.inference_output_type = tf.uint8 # or tf.int8
|
409 |
+
converter.experimental_new_quantizer = True
|
410 |
+
f = str(file).replace('.pt', '-int8.tflite')
|
411 |
+
if nms or agnostic_nms:
|
412 |
+
converter.target_spec.supported_ops.append(tf.lite.OpsSet.SELECT_TF_OPS)
|
413 |
+
|
414 |
+
tflite_model = converter.convert()
|
415 |
+
open(f, "wb").write(tflite_model)
|
416 |
+
return f, None
|
417 |
+
|
418 |
+
|
419 |
+
@try_export
|
420 |
+
def export_edgetpu(file, prefix=colorstr('Edge TPU:')):
|
421 |
+
# YOLO Edge TPU export https://coral.ai/docs/edgetpu/models-intro/
|
422 |
+
cmd = 'edgetpu_compiler --version'
|
423 |
+
help_url = 'https://coral.ai/docs/edgetpu/compiler/'
|
424 |
+
assert platform.system() == 'Linux', f'export only supported on Linux. See {help_url}'
|
425 |
+
if subprocess.run(f'{cmd} >/dev/null', shell=True).returncode != 0:
|
426 |
+
LOGGER.info(f'\n{prefix} export requires Edge TPU compiler. Attempting install from {help_url}')
|
427 |
+
sudo = subprocess.run('sudo --version >/dev/null', shell=True).returncode == 0 # sudo installed on system
|
428 |
+
for c in (
|
429 |
+
'curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -',
|
430 |
+
'echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" | sudo tee /etc/apt/sources.list.d/coral-edgetpu.list',
|
431 |
+
'sudo apt-get update', 'sudo apt-get install edgetpu-compiler'):
|
432 |
+
subprocess.run(c if sudo else c.replace('sudo ', ''), shell=True, check=True)
|
433 |
+
ver = subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1]
|
434 |
+
|
435 |
+
LOGGER.info(f'\n{prefix} starting export with Edge TPU compiler {ver}...')
|
436 |
+
f = str(file).replace('.pt', '-int8_edgetpu.tflite') # Edge TPU model
|
437 |
+
f_tfl = str(file).replace('.pt', '-int8.tflite') # TFLite model
|
438 |
+
|
439 |
+
cmd = f"edgetpu_compiler -s -d -k 10 --out_dir {file.parent} {f_tfl}"
|
440 |
+
subprocess.run(cmd.split(), check=True)
|
441 |
+
return f, None
|
442 |
+
|
443 |
+
|
444 |
+
@try_export
|
445 |
+
def export_tfjs(file, prefix=colorstr('TensorFlow.js:')):
|
446 |
+
# YOLO TensorFlow.js export
|
447 |
+
check_requirements('tensorflowjs')
|
448 |
+
import tensorflowjs as tfjs
|
449 |
+
|
450 |
+
LOGGER.info(f'\n{prefix} starting export with tensorflowjs {tfjs.__version__}...')
|
451 |
+
f = str(file).replace('.pt', '_web_model') # js dir
|
452 |
+
f_pb = file.with_suffix('.pb') # *.pb path
|
453 |
+
f_json = f'{f}/model.json' # *.json path
|
454 |
+
|
455 |
+
cmd = f'tensorflowjs_converter --input_format=tf_frozen_model ' \
|
456 |
+
f'--output_node_names=Identity,Identity_1,Identity_2,Identity_3 {f_pb} {f}'
|
457 |
+
subprocess.run(cmd.split())
|
458 |
+
|
459 |
+
json = Path(f_json).read_text()
|
460 |
+
with open(f_json, 'w') as j: # sort JSON Identity_* in ascending order
|
461 |
+
subst = re.sub(
|
462 |
+
r'{"outputs": {"Identity.?.?": {"name": "Identity.?.?"}, '
|
463 |
+
r'"Identity.?.?": {"name": "Identity.?.?"}, '
|
464 |
+
r'"Identity.?.?": {"name": "Identity.?.?"}, '
|
465 |
+
r'"Identity.?.?": {"name": "Identity.?.?"}}}', r'{"outputs": {"Identity": {"name": "Identity"}, '
|
466 |
+
r'"Identity_1": {"name": "Identity_1"}, '
|
467 |
+
r'"Identity_2": {"name": "Identity_2"}, '
|
468 |
+
r'"Identity_3": {"name": "Identity_3"}}}', json)
|
469 |
+
j.write(subst)
|
470 |
+
return f, None
|
471 |
+
|
472 |
+
|
473 |
+
def add_tflite_metadata(file, metadata, num_outputs):
|
474 |
+
# Add metadata to *.tflite models per https://www.tensorflow.org/lite/models/convert/metadata
|
475 |
+
with contextlib.suppress(ImportError):
|
476 |
+
# check_requirements('tflite_support')
|
477 |
+
from tflite_support import flatbuffers
|
478 |
+
from tflite_support import metadata as _metadata
|
479 |
+
from tflite_support import metadata_schema_py_generated as _metadata_fb
|
480 |
+
|
481 |
+
tmp_file = Path('/tmp/meta.txt')
|
482 |
+
with open(tmp_file, 'w') as meta_f:
|
483 |
+
meta_f.write(str(metadata))
|
484 |
+
|
485 |
+
model_meta = _metadata_fb.ModelMetadataT()
|
486 |
+
label_file = _metadata_fb.AssociatedFileT()
|
487 |
+
label_file.name = tmp_file.name
|
488 |
+
model_meta.associatedFiles = [label_file]
|
489 |
+
|
490 |
+
subgraph = _metadata_fb.SubGraphMetadataT()
|
491 |
+
subgraph.inputTensorMetadata = [_metadata_fb.TensorMetadataT()]
|
492 |
+
subgraph.outputTensorMetadata = [_metadata_fb.TensorMetadataT()] * num_outputs
|
493 |
+
model_meta.subgraphMetadata = [subgraph]
|
494 |
+
|
495 |
+
b = flatbuffers.Builder(0)
|
496 |
+
b.Finish(model_meta.Pack(b), _metadata.MetadataPopulator.METADATA_FILE_IDENTIFIER)
|
497 |
+
metadata_buf = b.Output()
|
498 |
+
|
499 |
+
populator = _metadata.MetadataPopulator.with_model_file(file)
|
500 |
+
populator.load_metadata_buffer(metadata_buf)
|
501 |
+
populator.load_associated_files([str(tmp_file)])
|
502 |
+
populator.populate()
|
503 |
+
tmp_file.unlink()
|
504 |
+
|
505 |
+
|
506 |
+
@smart_inference_mode()
|
507 |
+
def run(
|
508 |
+
data=ROOT / 'data/coco.yaml', # 'dataset.yaml path'
|
509 |
+
weights=ROOT / 'yolo.pt', # weights path
|
510 |
+
imgsz=(640, 640), # image (height, width)
|
511 |
+
batch_size=1, # batch size
|
512 |
+
device='cpu', # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
513 |
+
include=('torchscript', 'onnx'), # include formats
|
514 |
+
half=False, # FP16 half-precision export
|
515 |
+
inplace=False, # set YOLO Detect() inplace=True
|
516 |
+
keras=False, # use Keras
|
517 |
+
optimize=False, # TorchScript: optimize for mobile
|
518 |
+
int8=False, # CoreML/TF INT8 quantization
|
519 |
+
dynamic=False, # ONNX/TF/TensorRT: dynamic axes
|
520 |
+
simplify=False, # ONNX: simplify model
|
521 |
+
opset=12, # ONNX: opset version
|
522 |
+
verbose=False, # TensorRT: verbose log
|
523 |
+
workspace=4, # TensorRT: workspace size (GB)
|
524 |
+
nms=False, # TF: add NMS to model
|
525 |
+
agnostic_nms=False, # TF: add agnostic NMS to model
|
526 |
+
topk_per_class=100, # TF.js NMS: topk per class to keep
|
527 |
+
topk_all=100, # TF.js NMS: topk for all classes to keep
|
528 |
+
iou_thres=0.45, # TF.js NMS: IoU threshold
|
529 |
+
conf_thres=0.25, # TF.js NMS: confidence threshold
|
530 |
+
):
|
531 |
+
t = time.time()
|
532 |
+
include = [x.lower() for x in include] # to lowercase
|
533 |
+
fmts = tuple(export_formats()['Argument'][1:]) # --include arguments
|
534 |
+
flags = [x in include for x in fmts]
|
535 |
+
assert sum(flags) == len(include), f'ERROR: Invalid --include {include}, valid --include arguments are {fmts}'
|
536 |
+
jit, onnx, onnx_end2end, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle = flags # export booleans
|
537 |
+
file = Path(url2file(weights) if str(weights).startswith(('http:/', 'https:/')) else weights) # PyTorch weights
|
538 |
+
|
539 |
+
# Load PyTorch model
|
540 |
+
device = select_device(device)
|
541 |
+
if half:
|
542 |
+
assert device.type != 'cpu' or coreml, '--half only compatible with GPU export, i.e. use --device 0'
|
543 |
+
assert not dynamic, '--half not compatible with --dynamic, i.e. use either --half or --dynamic but not both'
|
544 |
+
model = attempt_load(weights, device=device, inplace=True, fuse=True) # load FP32 model
|
545 |
+
|
546 |
+
# Checks
|
547 |
+
imgsz *= 2 if len(imgsz) == 1 else 1 # expand
|
548 |
+
if optimize:
|
549 |
+
assert device.type == 'cpu', '--optimize not compatible with cuda devices, i.e. use --device cpu'
|
550 |
+
|
551 |
+
# Input
|
552 |
+
gs = int(max(model.stride)) # grid size (max stride)
|
553 |
+
imgsz = [check_img_size(x, gs) for x in imgsz] # verify img_size are gs-multiples
|
554 |
+
im = torch.zeros(batch_size, 3, *imgsz).to(device) # image size(1,3,320,192) BCHW iDetection
|
555 |
+
|
556 |
+
# Update model
|
557 |
+
model.eval()
|
558 |
+
for k, m in model.named_modules():
|
559 |
+
if isinstance(m, (Detect, DDetect, DualDetect, DualDDetect)):
|
560 |
+
m.inplace = inplace
|
561 |
+
m.dynamic = dynamic
|
562 |
+
m.export = True
|
563 |
+
|
564 |
+
for _ in range(2):
|
565 |
+
y = model(im) # dry runs
|
566 |
+
if half and not coreml:
|
567 |
+
im, model = im.half(), model.half() # to FP16
|
568 |
+
shape = tuple((y[0] if isinstance(y, (tuple, list)) else y).shape) # model output shape
|
569 |
+
metadata = {'stride': int(max(model.stride)), 'names': model.names} # model metadata
|
570 |
+
LOGGER.info(f"\n{colorstr('PyTorch:')} starting from {file} with output shape {shape} ({file_size(file):.1f} MB)")
|
571 |
+
|
572 |
+
# Exports
|
573 |
+
f = [''] * len(fmts) # exported filenames
|
574 |
+
warnings.filterwarnings(action='ignore', category=torch.jit.TracerWarning) # suppress TracerWarning
|
575 |
+
if jit: # TorchScript
|
576 |
+
f[0], _ = export_torchscript(model, im, file, optimize)
|
577 |
+
if engine: # TensorRT required before ONNX
|
578 |
+
f[1], _ = export_engine(model, im, file, half, dynamic, simplify, workspace, verbose)
|
579 |
+
if onnx or xml: # OpenVINO requires ONNX
|
580 |
+
f[2], _ = export_onnx(model, im, file, opset, dynamic, simplify)
|
581 |
+
if onnx_end2end:
|
582 |
+
if isinstance(model, DetectionModel):
|
583 |
+
labels = model.names
|
584 |
+
f[2], _ = export_onnx_end2end(model, im, file, simplify, topk_all, iou_thres, conf_thres, device, len(labels))
|
585 |
+
else:
|
586 |
+
raise RuntimeError("The model is not a DetectionModel.")
|
587 |
+
if xml: # OpenVINO
|
588 |
+
f[3], _ = export_openvino(file, metadata, half)
|
589 |
+
if coreml: # CoreML
|
590 |
+
f[4], _ = export_coreml(model, im, file, int8, half)
|
591 |
+
if any((saved_model, pb, tflite, edgetpu, tfjs)): # TensorFlow formats
|
592 |
+
assert not tflite or not tfjs, 'TFLite and TF.js models must be exported separately, please pass only one type.'
|
593 |
+
assert not isinstance(model, ClassificationModel), 'ClassificationModel export to TF formats not yet supported.'
|
594 |
+
f[5], s_model = export_saved_model(model.cpu(),
|
595 |
+
im,
|
596 |
+
file,
|
597 |
+
dynamic,
|
598 |
+
tf_nms=nms or agnostic_nms or tfjs,
|
599 |
+
agnostic_nms=agnostic_nms or tfjs,
|
600 |
+
topk_per_class=topk_per_class,
|
601 |
+
topk_all=topk_all,
|
602 |
+
iou_thres=iou_thres,
|
603 |
+
conf_thres=conf_thres,
|
604 |
+
keras=keras)
|
605 |
+
if pb or tfjs: # pb prerequisite to tfjs
|
606 |
+
f[6], _ = export_pb(s_model, file)
|
607 |
+
if tflite or edgetpu:
|
608 |
+
f[7], _ = export_tflite(s_model, im, file, int8 or edgetpu, data=data, nms=nms, agnostic_nms=agnostic_nms)
|
609 |
+
if edgetpu:
|
610 |
+
f[8], _ = export_edgetpu(file)
|
611 |
+
add_tflite_metadata(f[8] or f[7], metadata, num_outputs=len(s_model.outputs))
|
612 |
+
if tfjs:
|
613 |
+
f[9], _ = export_tfjs(file)
|
614 |
+
if paddle: # PaddlePaddle
|
615 |
+
f[10], _ = export_paddle(model, im, file, metadata)
|
616 |
+
|
617 |
+
# Finish
|
618 |
+
f = [str(x) for x in f if x] # filter out '' and None
|
619 |
+
if any(f):
|
620 |
+
cls, det, seg = (isinstance(model, x) for x in (ClassificationModel, DetectionModel, SegmentationModel)) # type
|
621 |
+
dir = Path('segment' if seg else 'classify' if cls else '')
|
622 |
+
h = '--half' if half else '' # --half FP16 inference arg
|
623 |
+
s = "# WARNING ⚠️ ClassificationModel not yet supported for PyTorch Hub AutoShape inference" if cls else \
|
624 |
+
"# WARNING ⚠️ SegmentationModel not yet supported for PyTorch Hub AutoShape inference" if seg else ''
|
625 |
+
if onnx_end2end:
|
626 |
+
LOGGER.info(f'\nExport complete ({time.time() - t:.1f}s)'
|
627 |
+
f"\nResults saved to {colorstr('bold', file.parent.resolve())}"
|
628 |
+
f"\nVisualize: https://netron.app")
|
629 |
+
else:
|
630 |
+
LOGGER.info(f'\nExport complete ({time.time() - t:.1f}s)'
|
631 |
+
f"\nResults saved to {colorstr('bold', file.parent.resolve())}"
|
632 |
+
f"\nDetect: python {dir / ('detect.py' if det else 'predict.py')} --weights {f[-1]} {h}"
|
633 |
+
f"\nValidate: python {dir / 'val.py'} --weights {f[-1]} {h}"
|
634 |
+
f"\nPyTorch Hub: model = torch.hub.load('ultralytics/yolov5', 'custom', '{f[-1]}') {s}"
|
635 |
+
f"\nVisualize: https://netron.app")
|
636 |
+
return f # return list of exported files/dirs
|
637 |
+
|
638 |
+
|
639 |
+
def parse_opt():
|
640 |
+
parser = argparse.ArgumentParser()
|
641 |
+
parser.add_argument('--data', type=str, default=ROOT / 'data/coco.yaml', help='dataset.yaml path')
|
642 |
+
parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolo.pt', help='model.pt path(s)')
|
643 |
+
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640, 640], help='image (h, w)')
|
644 |
+
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
|
645 |
+
parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
646 |
+
parser.add_argument('--half', action='store_true', help='FP16 half-precision export')
|
647 |
+
parser.add_argument('--inplace', action='store_true', help='set YOLO Detect() inplace=True')
|
648 |
+
parser.add_argument('--keras', action='store_true', help='TF: use Keras')
|
649 |
+
parser.add_argument('--optimize', action='store_true', help='TorchScript: optimize for mobile')
|
650 |
+
parser.add_argument('--int8', action='store_true', help='CoreML/TF INT8 quantization')
|
651 |
+
parser.add_argument('--dynamic', action='store_true', help='ONNX/TF/TensorRT: dynamic axes')
|
652 |
+
parser.add_argument('--simplify', action='store_true', help='ONNX: simplify model')
|
653 |
+
parser.add_argument('--opset', type=int, default=12, help='ONNX: opset version')
|
654 |
+
parser.add_argument('--verbose', action='store_true', help='TensorRT: verbose log')
|
655 |
+
parser.add_argument('--workspace', type=int, default=4, help='TensorRT: workspace size (GB)')
|
656 |
+
parser.add_argument('--nms', action='store_true', help='TF: add NMS to model')
|
657 |
+
parser.add_argument('--agnostic-nms', action='store_true', help='TF: add agnostic NMS to model')
|
658 |
+
parser.add_argument('--topk-per-class', type=int, default=100, help='TF.js NMS: topk per class to keep')
|
659 |
+
parser.add_argument('--topk-all', type=int, default=100, help='ONNX END2END/TF.js NMS: topk for all classes to keep')
|
660 |
+
parser.add_argument('--iou-thres', type=float, default=0.45, help='ONNX END2END/TF.js NMS: IoU threshold')
|
661 |
+
parser.add_argument('--conf-thres', type=float, default=0.25, help='ONNX END2END/TF.js NMS: confidence threshold')
|
662 |
+
parser.add_argument(
|
663 |
+
'--include',
|
664 |
+
nargs='+',
|
665 |
+
default=['torchscript'],
|
666 |
+
help='torchscript, onnx, onnx_end2end, openvino, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle')
|
667 |
+
opt = parser.parse_args()
|
668 |
+
|
669 |
+
if 'onnx_end2end' in opt.include:
|
670 |
+
opt.simplify = True
|
671 |
+
opt.dynamic = True
|
672 |
+
opt.inplace = True
|
673 |
+
opt.half = False
|
674 |
+
|
675 |
+
print_args(vars(opt))
|
676 |
+
return opt
|
677 |
+
|
678 |
+
|
679 |
+
def main(opt):
|
680 |
+
for opt.weights in (opt.weights if isinstance(opt.weights, list) else [opt.weights]):
|
681 |
+
run(**vars(opt))
|
682 |
+
|
683 |
+
|
684 |
+
if __name__ == "__main__":
|
685 |
+
opt = parse_opt()
|
686 |
+
main(opt)
|