Spaces:
Sleeping
Sleeping
Commit
·
9eb3c3e
1
Parent(s):
7117863
Minor fix
Browse files- models/yolo.py +818 -0
models/yolo.py
ADDED
@@ -0,0 +1,818 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import os
|
3 |
+
import platform
|
4 |
+
import sys
|
5 |
+
from copy import deepcopy
|
6 |
+
from pathlib import Path
|
7 |
+
|
8 |
+
FILE = Path(__file__).resolve()
|
9 |
+
ROOT = FILE.parents[1] # YOLO root directory
|
10 |
+
if str(ROOT) not in sys.path:
|
11 |
+
sys.path.append(str(ROOT)) # add ROOT to PATH
|
12 |
+
if platform.system() != 'Windows':
|
13 |
+
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
|
14 |
+
|
15 |
+
from models.common import *
|
16 |
+
from models.experimental import *
|
17 |
+
from utils.general import LOGGER, check_version, check_yaml, make_divisible, print_args
|
18 |
+
from utils.plots import feature_visualization
|
19 |
+
from utils.torch_utils import (fuse_conv_and_bn, initialize_weights, model_info, profile, scale_img, select_device,
|
20 |
+
time_sync)
|
21 |
+
from utils.tal.anchor_generator import make_anchors, dist2bbox
|
22 |
+
|
23 |
+
try:
|
24 |
+
import thop # for FLOPs computation
|
25 |
+
except ImportError:
|
26 |
+
thop = None
|
27 |
+
|
28 |
+
|
29 |
+
class Detect(nn.Module):
|
30 |
+
# YOLO Detect head for detection models
|
31 |
+
dynamic = False # force grid reconstruction
|
32 |
+
export = False # export mode
|
33 |
+
shape = None
|
34 |
+
anchors = torch.empty(0) # init
|
35 |
+
strides = torch.empty(0) # init
|
36 |
+
|
37 |
+
def __init__(self, nc=80, ch=(), inplace=True): # detection layer
|
38 |
+
super().__init__()
|
39 |
+
self.nc = nc # number of classes
|
40 |
+
self.nl = len(ch) # number of detection layers
|
41 |
+
self.reg_max = 16
|
42 |
+
self.no = nc + self.reg_max * 4 # number of outputs per anchor
|
43 |
+
self.inplace = inplace # use inplace ops (e.g. slice assignment)
|
44 |
+
self.stride = torch.zeros(self.nl) # strides computed during build
|
45 |
+
|
46 |
+
c2, c3 = max((ch[0] // 4, self.reg_max * 4, 16)), max((ch[0], min((self.nc * 2, 128)))) # channels
|
47 |
+
self.cv2 = nn.ModuleList(
|
48 |
+
nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3), nn.Conv2d(c2, 4 * self.reg_max, 1)) for x in ch)
|
49 |
+
self.cv3 = nn.ModuleList(
|
50 |
+
nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch)
|
51 |
+
self.dfl = DFL(self.reg_max) if self.reg_max > 1 else nn.Identity()
|
52 |
+
|
53 |
+
def forward(self, x):
|
54 |
+
shape = x[0].shape # BCHW
|
55 |
+
for i in range(self.nl):
|
56 |
+
x[i] = torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1)
|
57 |
+
if self.training:
|
58 |
+
return x
|
59 |
+
elif self.dynamic or self.shape != shape:
|
60 |
+
self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5))
|
61 |
+
self.shape = shape
|
62 |
+
|
63 |
+
box, cls = torch.cat([xi.view(shape[0], self.no, -1) for xi in x], 2).split((self.reg_max * 4, self.nc), 1)
|
64 |
+
dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
|
65 |
+
y = torch.cat((dbox, cls.sigmoid()), 1)
|
66 |
+
return y if self.export else (y, x)
|
67 |
+
|
68 |
+
def bias_init(self):
|
69 |
+
# Initialize Detect() biases, WARNING: requires stride availability
|
70 |
+
m = self # self.model[-1] # Detect() module
|
71 |
+
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1
|
72 |
+
# ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # nominal class frequency
|
73 |
+
for a, b, s in zip(m.cv2, m.cv3, m.stride): # from
|
74 |
+
a[-1].bias.data[:] = 1.0 # box
|
75 |
+
b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image)
|
76 |
+
|
77 |
+
|
78 |
+
class DDetect(nn.Module):
|
79 |
+
# YOLO Detect head for detection models
|
80 |
+
dynamic = False # force grid reconstruction
|
81 |
+
export = False # export mode
|
82 |
+
shape = None
|
83 |
+
anchors = torch.empty(0) # init
|
84 |
+
strides = torch.empty(0) # init
|
85 |
+
|
86 |
+
def __init__(self, nc=80, ch=(), inplace=True): # detection layer
|
87 |
+
super().__init__()
|
88 |
+
self.nc = nc # number of classes
|
89 |
+
self.nl = len(ch) # number of detection layers
|
90 |
+
self.reg_max = 16
|
91 |
+
self.no = nc + self.reg_max * 4 # number of outputs per anchor
|
92 |
+
self.inplace = inplace # use inplace ops (e.g. slice assignment)
|
93 |
+
self.stride = torch.zeros(self.nl) # strides computed during build
|
94 |
+
|
95 |
+
c2, c3 = make_divisible(max((ch[0] // 4, self.reg_max * 4, 16)), 4), max((ch[0], min((self.nc * 2, 128)))) # channels
|
96 |
+
self.cv2 = nn.ModuleList(
|
97 |
+
nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3, g=4), nn.Conv2d(c2, 4 * self.reg_max, 1, groups=4)) for x in ch)
|
98 |
+
self.cv3 = nn.ModuleList(
|
99 |
+
nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch)
|
100 |
+
self.dfl = DFL(self.reg_max) if self.reg_max > 1 else nn.Identity()
|
101 |
+
|
102 |
+
def forward(self, x):
|
103 |
+
shape = x[0].shape # BCHW
|
104 |
+
for i in range(self.nl):
|
105 |
+
x[i] = torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1)
|
106 |
+
if self.training:
|
107 |
+
return x
|
108 |
+
elif self.dynamic or self.shape != shape:
|
109 |
+
self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5))
|
110 |
+
self.shape = shape
|
111 |
+
|
112 |
+
box, cls = torch.cat([xi.view(shape[0], self.no, -1) for xi in x], 2).split((self.reg_max * 4, self.nc), 1)
|
113 |
+
dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
|
114 |
+
y = torch.cat((dbox, cls.sigmoid()), 1)
|
115 |
+
return y if self.export else (y, x)
|
116 |
+
|
117 |
+
def bias_init(self):
|
118 |
+
# Initialize Detect() biases, WARNING: requires stride availability
|
119 |
+
m = self # self.model[-1] # Detect() module
|
120 |
+
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1
|
121 |
+
# ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # nominal class frequency
|
122 |
+
for a, b, s in zip(m.cv2, m.cv3, m.stride): # from
|
123 |
+
a[-1].bias.data[:] = 1.0 # box
|
124 |
+
b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image)
|
125 |
+
|
126 |
+
|
127 |
+
class DualDetect(nn.Module):
|
128 |
+
# YOLO Detect head for detection models
|
129 |
+
dynamic = False # force grid reconstruction
|
130 |
+
export = False # export mode
|
131 |
+
shape = None
|
132 |
+
anchors = torch.empty(0) # init
|
133 |
+
strides = torch.empty(0) # init
|
134 |
+
|
135 |
+
def __init__(self, nc=80, ch=(), inplace=True): # detection layer
|
136 |
+
super().__init__()
|
137 |
+
self.nc = nc # number of classes
|
138 |
+
self.nl = len(ch) // 2 # number of detection layers
|
139 |
+
self.reg_max = 16
|
140 |
+
self.no = nc + self.reg_max * 4 # number of outputs per anchor
|
141 |
+
self.inplace = inplace # use inplace ops (e.g. slice assignment)
|
142 |
+
self.stride = torch.zeros(self.nl) # strides computed during build
|
143 |
+
|
144 |
+
c2, c3 = max((ch[0] // 4, self.reg_max * 4, 16)), max((ch[0], min((self.nc * 2, 128)))) # channels
|
145 |
+
c4, c5 = max((ch[self.nl] // 4, self.reg_max * 4, 16)), max((ch[self.nl], min((self.nc * 2, 128)))) # channels
|
146 |
+
self.cv2 = nn.ModuleList(
|
147 |
+
nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3), nn.Conv2d(c2, 4 * self.reg_max, 1)) for x in ch[:self.nl])
|
148 |
+
self.cv3 = nn.ModuleList(
|
149 |
+
nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch[:self.nl])
|
150 |
+
self.cv4 = nn.ModuleList(
|
151 |
+
nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, 4 * self.reg_max, 1)) for x in ch[self.nl:])
|
152 |
+
self.cv5 = nn.ModuleList(
|
153 |
+
nn.Sequential(Conv(x, c5, 3), Conv(c5, c5, 3), nn.Conv2d(c5, self.nc, 1)) for x in ch[self.nl:])
|
154 |
+
self.dfl = DFL(self.reg_max)
|
155 |
+
self.dfl2 = DFL(self.reg_max)
|
156 |
+
|
157 |
+
def forward(self, x):
|
158 |
+
shape = x[0].shape # BCHW
|
159 |
+
d1 = []
|
160 |
+
d2 = []
|
161 |
+
for i in range(self.nl):
|
162 |
+
d1.append(torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1))
|
163 |
+
d2.append(torch.cat((self.cv4[i](x[self.nl+i]), self.cv5[i](x[self.nl+i])), 1))
|
164 |
+
if self.training:
|
165 |
+
return [d1, d2]
|
166 |
+
elif self.dynamic or self.shape != shape:
|
167 |
+
self.anchors, self.strides = (d1.transpose(0, 1) for d1 in make_anchors(d1, self.stride, 0.5))
|
168 |
+
self.shape = shape
|
169 |
+
|
170 |
+
box, cls = torch.cat([di.view(shape[0], self.no, -1) for di in d1], 2).split((self.reg_max * 4, self.nc), 1)
|
171 |
+
dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
|
172 |
+
box2, cls2 = torch.cat([di.view(shape[0], self.no, -1) for di in d2], 2).split((self.reg_max * 4, self.nc), 1)
|
173 |
+
dbox2 = dist2bbox(self.dfl2(box2), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
|
174 |
+
y = [torch.cat((dbox, cls.sigmoid()), 1), torch.cat((dbox2, cls2.sigmoid()), 1)]
|
175 |
+
return y if self.export else (y, [d1, d2])
|
176 |
+
|
177 |
+
def bias_init(self):
|
178 |
+
# Initialize Detect() biases, WARNING: requires stride availability
|
179 |
+
m = self # self.model[-1] # Detect() module
|
180 |
+
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1
|
181 |
+
# ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # nominal class frequency
|
182 |
+
for a, b, s in zip(m.cv2, m.cv3, m.stride): # from
|
183 |
+
a[-1].bias.data[:] = 1.0 # box
|
184 |
+
b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image)
|
185 |
+
for a, b, s in zip(m.cv4, m.cv5, m.stride): # from
|
186 |
+
a[-1].bias.data[:] = 1.0 # box
|
187 |
+
b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image)
|
188 |
+
|
189 |
+
|
190 |
+
class DualDDetect(nn.Module):
|
191 |
+
# YOLO Detect head for detection models
|
192 |
+
dynamic = False # force grid reconstruction
|
193 |
+
export = False # export mode
|
194 |
+
shape = None
|
195 |
+
anchors = torch.empty(0) # init
|
196 |
+
strides = torch.empty(0) # init
|
197 |
+
|
198 |
+
def __init__(self, nc=80, ch=(), inplace=True): # detection layer
|
199 |
+
super().__init__()
|
200 |
+
self.nc = nc # number of classes
|
201 |
+
self.nl = len(ch) // 2 # number of detection layers
|
202 |
+
self.reg_max = 16
|
203 |
+
self.no = nc + self.reg_max * 4 # number of outputs per anchor
|
204 |
+
self.inplace = inplace # use inplace ops (e.g. slice assignment)
|
205 |
+
self.stride = torch.zeros(self.nl) # strides computed during build
|
206 |
+
|
207 |
+
c2, c3 = make_divisible(max((ch[0] // 4, self.reg_max * 4, 16)), 4), max((ch[0], min((self.nc * 2, 128)))) # channels
|
208 |
+
c4, c5 = make_divisible(max((ch[self.nl] // 4, self.reg_max * 4, 16)), 4), max((ch[self.nl], min((self.nc * 2, 128)))) # channels
|
209 |
+
self.cv2 = nn.ModuleList(
|
210 |
+
nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3, g=4), nn.Conv2d(c2, 4 * self.reg_max, 1, groups=4)) for x in ch[:self.nl])
|
211 |
+
self.cv3 = nn.ModuleList(
|
212 |
+
nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch[:self.nl])
|
213 |
+
self.cv4 = nn.ModuleList(
|
214 |
+
nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3, g=4), nn.Conv2d(c4, 4 * self.reg_max, 1, groups=4)) for x in ch[self.nl:])
|
215 |
+
self.cv5 = nn.ModuleList(
|
216 |
+
nn.Sequential(Conv(x, c5, 3), Conv(c5, c5, 3), nn.Conv2d(c5, self.nc, 1)) for x in ch[self.nl:])
|
217 |
+
self.dfl = DFL(self.reg_max)
|
218 |
+
self.dfl2 = DFL(self.reg_max)
|
219 |
+
|
220 |
+
def forward(self, x):
|
221 |
+
shape = x[0].shape # BCHW
|
222 |
+
d1 = []
|
223 |
+
d2 = []
|
224 |
+
for i in range(self.nl):
|
225 |
+
d1.append(torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1))
|
226 |
+
d2.append(torch.cat((self.cv4[i](x[self.nl+i]), self.cv5[i](x[self.nl+i])), 1))
|
227 |
+
if self.training:
|
228 |
+
return [d1, d2]
|
229 |
+
elif self.dynamic or self.shape != shape:
|
230 |
+
self.anchors, self.strides = (d1.transpose(0, 1) for d1 in make_anchors(d1, self.stride, 0.5))
|
231 |
+
self.shape = shape
|
232 |
+
|
233 |
+
box, cls = torch.cat([di.view(shape[0], self.no, -1) for di in d1], 2).split((self.reg_max * 4, self.nc), 1)
|
234 |
+
dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
|
235 |
+
box2, cls2 = torch.cat([di.view(shape[0], self.no, -1) for di in d2], 2).split((self.reg_max * 4, self.nc), 1)
|
236 |
+
dbox2 = dist2bbox(self.dfl2(box2), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
|
237 |
+
y = [torch.cat((dbox, cls.sigmoid()), 1), torch.cat((dbox2, cls2.sigmoid()), 1)]
|
238 |
+
return y if self.export else (y, [d1, d2])
|
239 |
+
#y = torch.cat((dbox2, cls2.sigmoid()), 1)
|
240 |
+
#return y if self.export else (y, d2)
|
241 |
+
#y1 = torch.cat((dbox, cls.sigmoid()), 1)
|
242 |
+
#y2 = torch.cat((dbox2, cls2.sigmoid()), 1)
|
243 |
+
#return [y1, y2] if self.export else [(y1, d1), (y2, d2)]
|
244 |
+
#return [y1, y2] if self.export else [(y1, y2), (d1, d2)]
|
245 |
+
|
246 |
+
def bias_init(self):
|
247 |
+
# Initialize Detect() biases, WARNING: requires stride availability
|
248 |
+
m = self # self.model[-1] # Detect() module
|
249 |
+
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1
|
250 |
+
# ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # nominal class frequency
|
251 |
+
for a, b, s in zip(m.cv2, m.cv3, m.stride): # from
|
252 |
+
a[-1].bias.data[:] = 1.0 # box
|
253 |
+
b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image)
|
254 |
+
for a, b, s in zip(m.cv4, m.cv5, m.stride): # from
|
255 |
+
a[-1].bias.data[:] = 1.0 # box
|
256 |
+
b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image)
|
257 |
+
|
258 |
+
|
259 |
+
class TripleDetect(nn.Module):
|
260 |
+
# YOLO Detect head for detection models
|
261 |
+
dynamic = False # force grid reconstruction
|
262 |
+
export = False # export mode
|
263 |
+
shape = None
|
264 |
+
anchors = torch.empty(0) # init
|
265 |
+
strides = torch.empty(0) # init
|
266 |
+
|
267 |
+
def __init__(self, nc=80, ch=(), inplace=True): # detection layer
|
268 |
+
super().__init__()
|
269 |
+
self.nc = nc # number of classes
|
270 |
+
self.nl = len(ch) // 3 # number of detection layers
|
271 |
+
self.reg_max = 16
|
272 |
+
self.no = nc + self.reg_max * 4 # number of outputs per anchor
|
273 |
+
self.inplace = inplace # use inplace ops (e.g. slice assignment)
|
274 |
+
self.stride = torch.zeros(self.nl) # strides computed during build
|
275 |
+
|
276 |
+
c2, c3 = max((ch[0] // 4, self.reg_max * 4, 16)), max((ch[0], min((self.nc * 2, 128)))) # channels
|
277 |
+
c4, c5 = max((ch[self.nl] // 4, self.reg_max * 4, 16)), max((ch[self.nl], min((self.nc * 2, 128)))) # channels
|
278 |
+
c6, c7 = max((ch[self.nl * 2] // 4, self.reg_max * 4, 16)), max((ch[self.nl * 2], min((self.nc * 2, 128)))) # channels
|
279 |
+
self.cv2 = nn.ModuleList(
|
280 |
+
nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3), nn.Conv2d(c2, 4 * self.reg_max, 1)) for x in ch[:self.nl])
|
281 |
+
self.cv3 = nn.ModuleList(
|
282 |
+
nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch[:self.nl])
|
283 |
+
self.cv4 = nn.ModuleList(
|
284 |
+
nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, 4 * self.reg_max, 1)) for x in ch[self.nl:self.nl*2])
|
285 |
+
self.cv5 = nn.ModuleList(
|
286 |
+
nn.Sequential(Conv(x, c5, 3), Conv(c5, c5, 3), nn.Conv2d(c5, self.nc, 1)) for x in ch[self.nl:self.nl*2])
|
287 |
+
self.cv6 = nn.ModuleList(
|
288 |
+
nn.Sequential(Conv(x, c6, 3), Conv(c6, c6, 3), nn.Conv2d(c6, 4 * self.reg_max, 1)) for x in ch[self.nl*2:self.nl*3])
|
289 |
+
self.cv7 = nn.ModuleList(
|
290 |
+
nn.Sequential(Conv(x, c7, 3), Conv(c7, c7, 3), nn.Conv2d(c7, self.nc, 1)) for x in ch[self.nl*2:self.nl*3])
|
291 |
+
self.dfl = DFL(self.reg_max)
|
292 |
+
self.dfl2 = DFL(self.reg_max)
|
293 |
+
self.dfl3 = DFL(self.reg_max)
|
294 |
+
|
295 |
+
def forward(self, x):
|
296 |
+
shape = x[0].shape # BCHW
|
297 |
+
d1 = []
|
298 |
+
d2 = []
|
299 |
+
d3 = []
|
300 |
+
for i in range(self.nl):
|
301 |
+
d1.append(torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1))
|
302 |
+
d2.append(torch.cat((self.cv4[i](x[self.nl+i]), self.cv5[i](x[self.nl+i])), 1))
|
303 |
+
d3.append(torch.cat((self.cv6[i](x[self.nl*2+i]), self.cv7[i](x[self.nl*2+i])), 1))
|
304 |
+
if self.training:
|
305 |
+
return [d1, d2, d3]
|
306 |
+
elif self.dynamic or self.shape != shape:
|
307 |
+
self.anchors, self.strides = (d1.transpose(0, 1) for d1 in make_anchors(d1, self.stride, 0.5))
|
308 |
+
self.shape = shape
|
309 |
+
|
310 |
+
box, cls = torch.cat([di.view(shape[0], self.no, -1) for di in d1], 2).split((self.reg_max * 4, self.nc), 1)
|
311 |
+
dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
|
312 |
+
box2, cls2 = torch.cat([di.view(shape[0], self.no, -1) for di in d2], 2).split((self.reg_max * 4, self.nc), 1)
|
313 |
+
dbox2 = dist2bbox(self.dfl2(box2), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
|
314 |
+
box3, cls3 = torch.cat([di.view(shape[0], self.no, -1) for di in d3], 2).split((self.reg_max * 4, self.nc), 1)
|
315 |
+
dbox3 = dist2bbox(self.dfl3(box3), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
|
316 |
+
y = [torch.cat((dbox, cls.sigmoid()), 1), torch.cat((dbox2, cls2.sigmoid()), 1), torch.cat((dbox3, cls3.sigmoid()), 1)]
|
317 |
+
return y if self.export else (y, [d1, d2, d3])
|
318 |
+
|
319 |
+
def bias_init(self):
|
320 |
+
# Initialize Detect() biases, WARNING: requires stride availability
|
321 |
+
m = self # self.model[-1] # Detect() module
|
322 |
+
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1
|
323 |
+
# ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # nominal class frequency
|
324 |
+
for a, b, s in zip(m.cv2, m.cv3, m.stride): # from
|
325 |
+
a[-1].bias.data[:] = 1.0 # box
|
326 |
+
b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image)
|
327 |
+
for a, b, s in zip(m.cv4, m.cv5, m.stride): # from
|
328 |
+
a[-1].bias.data[:] = 1.0 # box
|
329 |
+
b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image)
|
330 |
+
for a, b, s in zip(m.cv6, m.cv7, m.stride): # from
|
331 |
+
a[-1].bias.data[:] = 1.0 # box
|
332 |
+
b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image)
|
333 |
+
|
334 |
+
|
335 |
+
class TripleDDetect(nn.Module):
|
336 |
+
# YOLO Detect head for detection models
|
337 |
+
dynamic = False # force grid reconstruction
|
338 |
+
export = False # export mode
|
339 |
+
shape = None
|
340 |
+
anchors = torch.empty(0) # init
|
341 |
+
strides = torch.empty(0) # init
|
342 |
+
|
343 |
+
def __init__(self, nc=80, ch=(), inplace=True): # detection layer
|
344 |
+
super().__init__()
|
345 |
+
self.nc = nc # number of classes
|
346 |
+
self.nl = len(ch) // 3 # number of detection layers
|
347 |
+
self.reg_max = 16
|
348 |
+
self.no = nc + self.reg_max * 4 # number of outputs per anchor
|
349 |
+
self.inplace = inplace # use inplace ops (e.g. slice assignment)
|
350 |
+
self.stride = torch.zeros(self.nl) # strides computed during build
|
351 |
+
|
352 |
+
c2, c3 = make_divisible(max((ch[0] // 4, self.reg_max * 4, 16)), 4), \
|
353 |
+
max((ch[0], min((self.nc * 2, 128)))) # channels
|
354 |
+
c4, c5 = make_divisible(max((ch[self.nl] // 4, self.reg_max * 4, 16)), 4), \
|
355 |
+
max((ch[self.nl], min((self.nc * 2, 128)))) # channels
|
356 |
+
c6, c7 = make_divisible(max((ch[self.nl * 2] // 4, self.reg_max * 4, 16)), 4), \
|
357 |
+
max((ch[self.nl * 2], min((self.nc * 2, 128)))) # channels
|
358 |
+
self.cv2 = nn.ModuleList(
|
359 |
+
nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3, g=4),
|
360 |
+
nn.Conv2d(c2, 4 * self.reg_max, 1, groups=4)) for x in ch[:self.nl])
|
361 |
+
self.cv3 = nn.ModuleList(
|
362 |
+
nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch[:self.nl])
|
363 |
+
self.cv4 = nn.ModuleList(
|
364 |
+
nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3, g=4),
|
365 |
+
nn.Conv2d(c4, 4 * self.reg_max, 1, groups=4)) for x in ch[self.nl:self.nl*2])
|
366 |
+
self.cv5 = nn.ModuleList(
|
367 |
+
nn.Sequential(Conv(x, c5, 3), Conv(c5, c5, 3), nn.Conv2d(c5, self.nc, 1)) for x in ch[self.nl:self.nl*2])
|
368 |
+
self.cv6 = nn.ModuleList(
|
369 |
+
nn.Sequential(Conv(x, c6, 3), Conv(c6, c6, 3, g=4),
|
370 |
+
nn.Conv2d(c6, 4 * self.reg_max, 1, groups=4)) for x in ch[self.nl*2:self.nl*3])
|
371 |
+
self.cv7 = nn.ModuleList(
|
372 |
+
nn.Sequential(Conv(x, c7, 3), Conv(c7, c7, 3), nn.Conv2d(c7, self.nc, 1)) for x in ch[self.nl*2:self.nl*3])
|
373 |
+
self.dfl = DFL(self.reg_max)
|
374 |
+
self.dfl2 = DFL(self.reg_max)
|
375 |
+
self.dfl3 = DFL(self.reg_max)
|
376 |
+
|
377 |
+
def forward(self, x):
|
378 |
+
shape = x[0].shape # BCHW
|
379 |
+
d1 = []
|
380 |
+
d2 = []
|
381 |
+
d3 = []
|
382 |
+
for i in range(self.nl):
|
383 |
+
d1.append(torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1))
|
384 |
+
d2.append(torch.cat((self.cv4[i](x[self.nl+i]), self.cv5[i](x[self.nl+i])), 1))
|
385 |
+
d3.append(torch.cat((self.cv6[i](x[self.nl*2+i]), self.cv7[i](x[self.nl*2+i])), 1))
|
386 |
+
if self.training:
|
387 |
+
return [d1, d2, d3]
|
388 |
+
elif self.dynamic or self.shape != shape:
|
389 |
+
self.anchors, self.strides = (d1.transpose(0, 1) for d1 in make_anchors(d1, self.stride, 0.5))
|
390 |
+
self.shape = shape
|
391 |
+
|
392 |
+
box, cls = torch.cat([di.view(shape[0], self.no, -1) for di in d1], 2).split((self.reg_max * 4, self.nc), 1)
|
393 |
+
dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
|
394 |
+
box2, cls2 = torch.cat([di.view(shape[0], self.no, -1) for di in d2], 2).split((self.reg_max * 4, self.nc), 1)
|
395 |
+
dbox2 = dist2bbox(self.dfl2(box2), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
|
396 |
+
box3, cls3 = torch.cat([di.view(shape[0], self.no, -1) for di in d3], 2).split((self.reg_max * 4, self.nc), 1)
|
397 |
+
dbox3 = dist2bbox(self.dfl3(box3), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
|
398 |
+
#y = [torch.cat((dbox, cls.sigmoid()), 1), torch.cat((dbox2, cls2.sigmoid()), 1), torch.cat((dbox3, cls3.sigmoid()), 1)]
|
399 |
+
#return y if self.export else (y, [d1, d2, d3])
|
400 |
+
y = torch.cat((dbox3, cls3.sigmoid()), 1)
|
401 |
+
return y if self.export else (y, d3)
|
402 |
+
|
403 |
+
def bias_init(self):
|
404 |
+
# Initialize Detect() biases, WARNING: requires stride availability
|
405 |
+
m = self # self.model[-1] # Detect() module
|
406 |
+
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1
|
407 |
+
# ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # nominal class frequency
|
408 |
+
for a, b, s in zip(m.cv2, m.cv3, m.stride): # from
|
409 |
+
a[-1].bias.data[:] = 1.0 # box
|
410 |
+
b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image)
|
411 |
+
for a, b, s in zip(m.cv4, m.cv5, m.stride): # from
|
412 |
+
a[-1].bias.data[:] = 1.0 # box
|
413 |
+
b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image)
|
414 |
+
for a, b, s in zip(m.cv6, m.cv7, m.stride): # from
|
415 |
+
a[-1].bias.data[:] = 1.0 # box
|
416 |
+
b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image)
|
417 |
+
|
418 |
+
|
419 |
+
class Segment(Detect):
|
420 |
+
# YOLO Segment head for segmentation models
|
421 |
+
def __init__(self, nc=80, nm=32, npr=256, ch=(), inplace=True):
|
422 |
+
super().__init__(nc, ch, inplace)
|
423 |
+
self.nm = nm # number of masks
|
424 |
+
self.npr = npr # number of protos
|
425 |
+
self.proto = Proto(ch[0], self.npr, self.nm) # protos
|
426 |
+
self.detect = Detect.forward
|
427 |
+
|
428 |
+
c4 = max(ch[0] // 4, self.nm)
|
429 |
+
self.cv4 = nn.ModuleList(nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, self.nm, 1)) for x in ch)
|
430 |
+
|
431 |
+
def forward(self, x):
|
432 |
+
p = self.proto(x[0])
|
433 |
+
bs = p.shape[0]
|
434 |
+
|
435 |
+
mc = torch.cat([self.cv4[i](x[i]).view(bs, self.nm, -1) for i in range(self.nl)], 2) # mask coefficients
|
436 |
+
x = self.detect(self, x)
|
437 |
+
if self.training:
|
438 |
+
return x, mc, p
|
439 |
+
return (torch.cat([x, mc], 1), p) if self.export else (torch.cat([x[0], mc], 1), (x[1], mc, p))
|
440 |
+
|
441 |
+
|
442 |
+
class DSegment(DDetect):
|
443 |
+
# YOLO Segment head for segmentation models
|
444 |
+
def __init__(self, nc=80, nm=32, npr=256, ch=(), inplace=True):
|
445 |
+
super().__init__(nc, ch[:-1], inplace)
|
446 |
+
self.nl = len(ch)-1
|
447 |
+
self.nm = nm # number of masks
|
448 |
+
self.npr = npr # number of protos
|
449 |
+
self.proto = Conv(ch[-1], self.nm, 1) # protos
|
450 |
+
self.detect = DDetect.forward
|
451 |
+
|
452 |
+
c4 = max(ch[0] // 4, self.nm)
|
453 |
+
self.cv4 = nn.ModuleList(nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, self.nm, 1)) for x in ch[:-1])
|
454 |
+
|
455 |
+
def forward(self, x):
|
456 |
+
p = self.proto(x[-1])
|
457 |
+
bs = p.shape[0]
|
458 |
+
|
459 |
+
mc = torch.cat([self.cv4[i](x[i]).view(bs, self.nm, -1) for i in range(self.nl)], 2) # mask coefficients
|
460 |
+
x = self.detect(self, x[:-1])
|
461 |
+
if self.training:
|
462 |
+
return x, mc, p
|
463 |
+
return (torch.cat([x, mc], 1), p) if self.export else (torch.cat([x[0], mc], 1), (x[1], mc, p))
|
464 |
+
|
465 |
+
|
466 |
+
class DualDSegment(DualDDetect):
|
467 |
+
# YOLO Segment head for segmentation models
|
468 |
+
def __init__(self, nc=80, nm=32, npr=256, ch=(), inplace=True):
|
469 |
+
super().__init__(nc, ch[:-2], inplace)
|
470 |
+
self.nl = (len(ch)-2) // 2
|
471 |
+
self.nm = nm # number of masks
|
472 |
+
self.npr = npr # number of protos
|
473 |
+
self.proto = Conv(ch[-2], self.nm, 1) # protos
|
474 |
+
self.proto2 = Conv(ch[-1], self.nm, 1) # protos
|
475 |
+
self.detect = DualDDetect.forward
|
476 |
+
|
477 |
+
c6 = max(ch[0] // 4, self.nm)
|
478 |
+
c7 = max(ch[self.nl] // 4, self.nm)
|
479 |
+
self.cv6 = nn.ModuleList(nn.Sequential(Conv(x, c6, 3), Conv(c6, c6, 3), nn.Conv2d(c6, self.nm, 1)) for x in ch[:self.nl])
|
480 |
+
self.cv7 = nn.ModuleList(nn.Sequential(Conv(x, c7, 3), Conv(c7, c7, 3), nn.Conv2d(c7, self.nm, 1)) for x in ch[self.nl:self.nl*2])
|
481 |
+
|
482 |
+
def forward(self, x):
|
483 |
+
p = [self.proto(x[-2]), self.proto2(x[-1])]
|
484 |
+
bs = p[0].shape[0]
|
485 |
+
|
486 |
+
mc = [torch.cat([self.cv6[i](x[i]).view(bs, self.nm, -1) for i in range(self.nl)], 2),
|
487 |
+
torch.cat([self.cv7[i](x[self.nl+i]).view(bs, self.nm, -1) for i in range(self.nl)], 2)] # mask coefficients
|
488 |
+
d = self.detect(self, x[:-2])
|
489 |
+
if self.training:
|
490 |
+
return d, mc, p
|
491 |
+
return (torch.cat([d[0][1], mc[1]], 1), (d[1][1], mc[1], p[1]))
|
492 |
+
|
493 |
+
|
494 |
+
class Panoptic(Detect):
|
495 |
+
# YOLO Panoptic head for panoptic segmentation models
|
496 |
+
def __init__(self, nc=80, sem_nc=93, nm=32, npr=256, ch=(), inplace=True):
|
497 |
+
super().__init__(nc, ch, inplace)
|
498 |
+
self.sem_nc = sem_nc
|
499 |
+
self.nm = nm # number of masks
|
500 |
+
self.npr = npr # number of protos
|
501 |
+
self.proto = Proto(ch[0], self.npr, self.nm) # protos
|
502 |
+
self.uconv = UConv(ch[0], ch[0]//4, self.sem_nc+self.nc)
|
503 |
+
self.detect = Detect.forward
|
504 |
+
|
505 |
+
c4 = max(ch[0] // 4, self.nm)
|
506 |
+
self.cv4 = nn.ModuleList(nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, self.nm, 1)) for x in ch)
|
507 |
+
|
508 |
+
|
509 |
+
def forward(self, x):
|
510 |
+
p = self.proto(x[0])
|
511 |
+
s = self.uconv(x[0])
|
512 |
+
bs = p.shape[0]
|
513 |
+
|
514 |
+
mc = torch.cat([self.cv4[i](x[i]).view(bs, self.nm, -1) for i in range(self.nl)], 2) # mask coefficients
|
515 |
+
x = self.detect(self, x)
|
516 |
+
if self.training:
|
517 |
+
return x, mc, p, s
|
518 |
+
return (torch.cat([x, mc], 1), p, s) if self.export else (torch.cat([x[0], mc], 1), (x[1], mc, p, s))
|
519 |
+
|
520 |
+
|
521 |
+
class BaseModel(nn.Module):
|
522 |
+
# YOLO base model
|
523 |
+
def forward(self, x, profile=False, visualize=False):
|
524 |
+
return self._forward_once(x, profile, visualize) # single-scale inference, train
|
525 |
+
|
526 |
+
def _forward_once(self, x, profile=False, visualize=False):
|
527 |
+
y, dt = [], [] # outputs
|
528 |
+
for m in self.model:
|
529 |
+
if m.f != -1: # if not from previous layer
|
530 |
+
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
|
531 |
+
if profile:
|
532 |
+
self._profile_one_layer(m, x, dt)
|
533 |
+
x = m(x) # run
|
534 |
+
y.append(x if m.i in self.save else None) # save output
|
535 |
+
if visualize:
|
536 |
+
feature_visualization(x, m.type, m.i, save_dir=visualize)
|
537 |
+
return x
|
538 |
+
|
539 |
+
def _profile_one_layer(self, m, x, dt):
|
540 |
+
c = m == self.model[-1] # is final layer, copy input as inplace fix
|
541 |
+
o = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPs
|
542 |
+
t = time_sync()
|
543 |
+
for _ in range(10):
|
544 |
+
m(x.copy() if c else x)
|
545 |
+
dt.append((time_sync() - t) * 100)
|
546 |
+
if m == self.model[0]:
|
547 |
+
LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s} module")
|
548 |
+
LOGGER.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f} {m.type}')
|
549 |
+
if c:
|
550 |
+
LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s} Total")
|
551 |
+
|
552 |
+
def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers
|
553 |
+
LOGGER.info('Fusing layers... ')
|
554 |
+
for m in self.model.modules():
|
555 |
+
if isinstance(m, (RepConvN)) and hasattr(m, 'fuse_convs'):
|
556 |
+
m.fuse_convs()
|
557 |
+
m.forward = m.forward_fuse # update forward
|
558 |
+
if isinstance(m, (Conv, DWConv)) and hasattr(m, 'bn'):
|
559 |
+
m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv
|
560 |
+
delattr(m, 'bn') # remove batchnorm
|
561 |
+
m.forward = m.forward_fuse # update forward
|
562 |
+
self.info()
|
563 |
+
return self
|
564 |
+
|
565 |
+
def info(self, verbose=False, img_size=640): # print model information
|
566 |
+
model_info(self, verbose, img_size)
|
567 |
+
|
568 |
+
def _apply(self, fn):
|
569 |
+
# Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers
|
570 |
+
self = super()._apply(fn)
|
571 |
+
m = self.model[-1] # Detect()
|
572 |
+
if isinstance(m, (Detect, DualDetect, TripleDetect, DDetect, DualDDetect, TripleDDetect, Segment, DSegment, DualDSegment, Panoptic)):
|
573 |
+
m.stride = fn(m.stride)
|
574 |
+
m.anchors = fn(m.anchors)
|
575 |
+
m.strides = fn(m.strides)
|
576 |
+
# m.grid = list(map(fn, m.grid))
|
577 |
+
return self
|
578 |
+
|
579 |
+
|
580 |
+
class DetectionModel(BaseModel):
|
581 |
+
# YOLO detection model
|
582 |
+
def __init__(self, cfg='yolo.yaml', ch=3, nc=None, anchors=None): # model, input channels, number of classes
|
583 |
+
super().__init__()
|
584 |
+
if isinstance(cfg, dict):
|
585 |
+
self.yaml = cfg # model dict
|
586 |
+
else: # is *.yaml
|
587 |
+
import yaml # for torch hub
|
588 |
+
self.yaml_file = Path(cfg).name
|
589 |
+
with open(cfg, encoding='ascii', errors='ignore') as f:
|
590 |
+
self.yaml = yaml.safe_load(f) # model dict
|
591 |
+
|
592 |
+
# Define model
|
593 |
+
ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels
|
594 |
+
if nc and nc != self.yaml['nc']:
|
595 |
+
LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
|
596 |
+
self.yaml['nc'] = nc # override yaml value
|
597 |
+
if anchors:
|
598 |
+
LOGGER.info(f'Overriding model.yaml anchors with anchors={anchors}')
|
599 |
+
self.yaml['anchors'] = round(anchors) # override yaml value
|
600 |
+
self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist
|
601 |
+
self.names = [str(i) for i in range(self.yaml['nc'])] # default names
|
602 |
+
self.inplace = self.yaml.get('inplace', True)
|
603 |
+
|
604 |
+
# Build strides, anchors
|
605 |
+
m = self.model[-1] # Detect()
|
606 |
+
if isinstance(m, (Detect, DDetect, Segment, DSegment, Panoptic)):
|
607 |
+
s = 256 # 2x min stride
|
608 |
+
m.inplace = self.inplace
|
609 |
+
forward = lambda x: self.forward(x)[0] if isinstance(m, (Segment, DSegment, Panoptic)) else self.forward(x)
|
610 |
+
m.stride = torch.tensor([s / x.shape[-2] for x in forward(torch.zeros(1, ch, s, s))]) # forward
|
611 |
+
# check_anchor_order(m)
|
612 |
+
# m.anchors /= m.stride.view(-1, 1, 1)
|
613 |
+
self.stride = m.stride
|
614 |
+
m.bias_init() # only run once
|
615 |
+
if isinstance(m, (DualDetect, TripleDetect, DualDDetect, TripleDDetect, DualDSegment)):
|
616 |
+
s = 256 # 2x min stride
|
617 |
+
m.inplace = self.inplace
|
618 |
+
forward = lambda x: self.forward(x)[0][0] if isinstance(m, (DualDSegment)) else self.forward(x)[0]
|
619 |
+
m.stride = torch.tensor([s / x.shape[-2] for x in forward(torch.zeros(1, ch, s, s))]) # forward
|
620 |
+
# check_anchor_order(m)
|
621 |
+
# m.anchors /= m.stride.view(-1, 1, 1)
|
622 |
+
self.stride = m.stride
|
623 |
+
m.bias_init() # only run once
|
624 |
+
|
625 |
+
# Init weights, biases
|
626 |
+
initialize_weights(self)
|
627 |
+
self.info()
|
628 |
+
LOGGER.info('')
|
629 |
+
|
630 |
+
def forward(self, x, augment=False, profile=False, visualize=False):
|
631 |
+
if augment:
|
632 |
+
return self._forward_augment(x) # augmented inference, None
|
633 |
+
return self._forward_once(x, profile, visualize) # single-scale inference, train
|
634 |
+
|
635 |
+
def _forward_augment(self, x):
|
636 |
+
img_size = x.shape[-2:] # height, width
|
637 |
+
s = [1, 0.83, 0.67] # scales
|
638 |
+
f = [None, 3, None] # flips (2-ud, 3-lr)
|
639 |
+
y = [] # outputs
|
640 |
+
for si, fi in zip(s, f):
|
641 |
+
xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))
|
642 |
+
yi = self._forward_once(xi)[0] # forward
|
643 |
+
# cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1]) # save
|
644 |
+
yi = self._descale_pred(yi, fi, si, img_size)
|
645 |
+
y.append(yi)
|
646 |
+
y = self._clip_augmented(y) # clip augmented tails
|
647 |
+
return torch.cat(y, 1), None # augmented inference, train
|
648 |
+
|
649 |
+
def _descale_pred(self, p, flips, scale, img_size):
|
650 |
+
# de-scale predictions following augmented inference (inverse operation)
|
651 |
+
if self.inplace:
|
652 |
+
p[..., :4] /= scale # de-scale
|
653 |
+
if flips == 2:
|
654 |
+
p[..., 1] = img_size[0] - p[..., 1] # de-flip ud
|
655 |
+
elif flips == 3:
|
656 |
+
p[..., 0] = img_size[1] - p[..., 0] # de-flip lr
|
657 |
+
else:
|
658 |
+
x, y, wh = p[..., 0:1] / scale, p[..., 1:2] / scale, p[..., 2:4] / scale # de-scale
|
659 |
+
if flips == 2:
|
660 |
+
y = img_size[0] - y # de-flip ud
|
661 |
+
elif flips == 3:
|
662 |
+
x = img_size[1] - x # de-flip lr
|
663 |
+
p = torch.cat((x, y, wh, p[..., 4:]), -1)
|
664 |
+
return p
|
665 |
+
|
666 |
+
def _clip_augmented(self, y):
|
667 |
+
# Clip YOLO augmented inference tails
|
668 |
+
nl = self.model[-1].nl # number of detection layers (P3-P5)
|
669 |
+
g = sum(4 ** x for x in range(nl)) # grid points
|
670 |
+
e = 1 # exclude layer count
|
671 |
+
i = (y[0].shape[1] // g) * sum(4 ** x for x in range(e)) # indices
|
672 |
+
y[0] = y[0][:, :-i] # large
|
673 |
+
i = (y[-1].shape[1] // g) * sum(4 ** (nl - 1 - x) for x in range(e)) # indices
|
674 |
+
y[-1] = y[-1][:, i:] # small
|
675 |
+
return y
|
676 |
+
|
677 |
+
|
678 |
+
Model = DetectionModel # retain YOLO 'Model' class for backwards compatibility
|
679 |
+
|
680 |
+
|
681 |
+
class SegmentationModel(DetectionModel):
|
682 |
+
# YOLO segmentation model
|
683 |
+
def __init__(self, cfg='yolo-seg.yaml', ch=3, nc=None, anchors=None):
|
684 |
+
super().__init__(cfg, ch, nc, anchors)
|
685 |
+
|
686 |
+
|
687 |
+
class ClassificationModel(BaseModel):
|
688 |
+
# YOLO classification model
|
689 |
+
def __init__(self, cfg=None, model=None, nc=1000, cutoff=10): # yaml, model, number of classes, cutoff index
|
690 |
+
super().__init__()
|
691 |
+
self._from_detection_model(model, nc, cutoff) if model is not None else self._from_yaml(cfg)
|
692 |
+
|
693 |
+
def _from_detection_model(self, model, nc=1000, cutoff=10):
|
694 |
+
# Create a YOLO classification model from a YOLO detection model
|
695 |
+
if isinstance(model, DetectMultiBackend):
|
696 |
+
model = model.model # unwrap DetectMultiBackend
|
697 |
+
model.model = model.model[:cutoff] # backbone
|
698 |
+
m = model.model[-1] # last layer
|
699 |
+
ch = m.conv.in_channels if hasattr(m, 'conv') else m.cv1.conv.in_channels # ch into module
|
700 |
+
c = Classify(ch, nc) # Classify()
|
701 |
+
c.i, c.f, c.type = m.i, m.f, 'models.common.Classify' # index, from, type
|
702 |
+
model.model[-1] = c # replace
|
703 |
+
self.model = model.model
|
704 |
+
self.stride = model.stride
|
705 |
+
self.save = []
|
706 |
+
self.nc = nc
|
707 |
+
|
708 |
+
def _from_yaml(self, cfg):
|
709 |
+
# Create a YOLO classification model from a *.yaml file
|
710 |
+
self.model = None
|
711 |
+
|
712 |
+
|
713 |
+
def parse_model(d, ch): # model_dict, input_channels(3)
|
714 |
+
# Parse a YOLO model.yaml dictionary
|
715 |
+
LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10} {'module':<40}{'arguments':<30}")
|
716 |
+
anchors, nc, gd, gw, act = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple'], d.get('activation')
|
717 |
+
if act:
|
718 |
+
Conv.default_act = eval(act) # redefine default activation, i.e. Conv.default_act = nn.SiLU()
|
719 |
+
RepConvN.default_act = eval(act) # redefine default activation, i.e. Conv.default_act = nn.SiLU()
|
720 |
+
LOGGER.info(f"{colorstr('activation:')} {act}") # print
|
721 |
+
na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
|
722 |
+
no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
|
723 |
+
|
724 |
+
layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
|
725 |
+
for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args
|
726 |
+
m = eval(m) if isinstance(m, str) else m # eval strings
|
727 |
+
for j, a in enumerate(args):
|
728 |
+
with contextlib.suppress(NameError):
|
729 |
+
args[j] = eval(a) if isinstance(a, str) else a # eval strings
|
730 |
+
|
731 |
+
n = n_ = max(round(n * gd), 1) if n > 1 else n # depth gain
|
732 |
+
if m in {
|
733 |
+
Conv, AConv, ConvTranspose,
|
734 |
+
Bottleneck, SPP, SPPF, DWConv, BottleneckCSP, nn.ConvTranspose2d, DWConvTranspose2d, SPPCSPC, ADown,
|
735 |
+
RepNCSPELAN4, SPPELAN}:
|
736 |
+
c1, c2 = ch[f], args[0]
|
737 |
+
if c2 != no: # if not output
|
738 |
+
c2 = make_divisible(c2 * gw, 8)
|
739 |
+
|
740 |
+
args = [c1, c2, *args[1:]]
|
741 |
+
if m in {BottleneckCSP, SPPCSPC}:
|
742 |
+
args.insert(2, n) # number of repeats
|
743 |
+
n = 1
|
744 |
+
elif m is nn.BatchNorm2d:
|
745 |
+
args = [ch[f]]
|
746 |
+
elif m is Concat:
|
747 |
+
c2 = sum(ch[x] for x in f)
|
748 |
+
elif m is Shortcut:
|
749 |
+
c2 = ch[f[0]]
|
750 |
+
elif m is ReOrg:
|
751 |
+
c2 = ch[f] * 4
|
752 |
+
elif m is CBLinear:
|
753 |
+
c2 = args[0]
|
754 |
+
c1 = ch[f]
|
755 |
+
args = [c1, c2, *args[1:]]
|
756 |
+
elif m is CBFuse:
|
757 |
+
c2 = ch[f[-1]]
|
758 |
+
# TODO: channel, gw, gd
|
759 |
+
elif m in {Detect, DualDetect, TripleDetect, DDetect, DualDDetect, TripleDDetect, Segment, DSegment, DualDSegment, Panoptic}:
|
760 |
+
args.append([ch[x] for x in f])
|
761 |
+
# if isinstance(args[1], int): # number of anchors
|
762 |
+
# args[1] = [list(range(args[1] * 2))] * len(f)
|
763 |
+
if m in {Segment, DSegment, DualDSegment, Panoptic}:
|
764 |
+
args[2] = make_divisible(args[2] * gw, 8)
|
765 |
+
elif m is Contract:
|
766 |
+
c2 = ch[f] * args[0] ** 2
|
767 |
+
elif m is Expand:
|
768 |
+
c2 = ch[f] // args[0] ** 2
|
769 |
+
else:
|
770 |
+
c2 = ch[f]
|
771 |
+
|
772 |
+
m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module
|
773 |
+
t = str(m)[8:-2].replace('__main__.', '') # module type
|
774 |
+
np = sum(x.numel() for x in m_.parameters()) # number params
|
775 |
+
m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
|
776 |
+
LOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{np:10.0f} {t:<40}{str(args):<30}') # print
|
777 |
+
save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
|
778 |
+
layers.append(m_)
|
779 |
+
if i == 0:
|
780 |
+
ch = []
|
781 |
+
ch.append(c2)
|
782 |
+
return nn.Sequential(*layers), sorted(save)
|
783 |
+
|
784 |
+
|
785 |
+
if __name__ == '__main__':
|
786 |
+
parser = argparse.ArgumentParser()
|
787 |
+
parser.add_argument('--cfg', type=str, default='yolo.yaml', help='model.yaml')
|
788 |
+
parser.add_argument('--batch-size', type=int, default=1, help='total batch size for all GPUs')
|
789 |
+
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
790 |
+
parser.add_argument('--profile', action='store_true', help='profile model speed')
|
791 |
+
parser.add_argument('--line-profile', action='store_true', help='profile model speed layer by layer')
|
792 |
+
parser.add_argument('--test', action='store_true', help='test all yolo*.yaml')
|
793 |
+
opt = parser.parse_args()
|
794 |
+
opt.cfg = check_yaml(opt.cfg) # check YAML
|
795 |
+
print_args(vars(opt))
|
796 |
+
device = select_device(opt.device)
|
797 |
+
|
798 |
+
# Create model
|
799 |
+
im = torch.rand(opt.batch_size, 3, 640, 640).to(device)
|
800 |
+
model = Model(opt.cfg).to(device)
|
801 |
+
model.eval()
|
802 |
+
|
803 |
+
# Options
|
804 |
+
if opt.line_profile: # profile layer by layer
|
805 |
+
model(im, profile=True)
|
806 |
+
|
807 |
+
elif opt.profile: # profile forward-backward
|
808 |
+
results = profile(input=im, ops=[model], n=3)
|
809 |
+
|
810 |
+
elif opt.test: # test all models
|
811 |
+
for cfg in Path(ROOT / 'models').rglob('yolo*.yaml'):
|
812 |
+
try:
|
813 |
+
_ = Model(cfg)
|
814 |
+
except Exception as e:
|
815 |
+
print(f'Error in {cfg}: {e}')
|
816 |
+
|
817 |
+
else: # report fused model summary
|
818 |
+
model.fuse()
|