Spaces:
Sleeping
Sleeping
Commit
·
cd5db6b
1
Parent(s):
6b1f333
Minor changes
Browse files- utils/segment/general.py +137 -0
utils/segment/general.py
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
import torch.nn.functional as F
|
5 |
+
|
6 |
+
|
7 |
+
def crop_mask(masks, boxes):
|
8 |
+
"""
|
9 |
+
"Crop" predicted masks by zeroing out everything not in the predicted bbox.
|
10 |
+
Vectorized by Chong (thanks Chong).
|
11 |
+
|
12 |
+
Args:
|
13 |
+
- masks should be a size [h, w, n] tensor of masks
|
14 |
+
- boxes should be a size [n, 4] tensor of bbox coords in relative point form
|
15 |
+
"""
|
16 |
+
|
17 |
+
n, h, w = masks.shape
|
18 |
+
x1, y1, x2, y2 = torch.chunk(boxes[:, :, None], 4, 1) # x1 shape(1,1,n)
|
19 |
+
r = torch.arange(w, device=masks.device, dtype=x1.dtype)[None, None, :] # rows shape(1,w,1)
|
20 |
+
c = torch.arange(h, device=masks.device, dtype=x1.dtype)[None, :, None] # cols shape(h,1,1)
|
21 |
+
|
22 |
+
return masks * ((r >= x1) * (r < x2) * (c >= y1) * (c < y2))
|
23 |
+
|
24 |
+
|
25 |
+
def process_mask_upsample(protos, masks_in, bboxes, shape):
|
26 |
+
"""
|
27 |
+
Crop after upsample.
|
28 |
+
proto_out: [mask_dim, mask_h, mask_w]
|
29 |
+
out_masks: [n, mask_dim], n is number of masks after nms
|
30 |
+
bboxes: [n, 4], n is number of masks after nms
|
31 |
+
shape:input_image_size, (h, w)
|
32 |
+
|
33 |
+
return: h, w, n
|
34 |
+
"""
|
35 |
+
|
36 |
+
c, mh, mw = protos.shape # CHW
|
37 |
+
masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw)
|
38 |
+
masks = F.interpolate(masks[None], shape, mode='bilinear', align_corners=False)[0] # CHW
|
39 |
+
masks = crop_mask(masks, bboxes) # CHW
|
40 |
+
return masks.gt_(0.5)
|
41 |
+
|
42 |
+
|
43 |
+
def process_mask(protos, masks_in, bboxes, shape, upsample=False):
|
44 |
+
"""
|
45 |
+
Crop before upsample.
|
46 |
+
proto_out: [mask_dim, mask_h, mask_w]
|
47 |
+
out_masks: [n, mask_dim], n is number of masks after nms
|
48 |
+
bboxes: [n, 4], n is number of masks after nms
|
49 |
+
shape:input_image_size, (h, w)
|
50 |
+
|
51 |
+
return: h, w, n
|
52 |
+
"""
|
53 |
+
|
54 |
+
c, mh, mw = protos.shape # CHW
|
55 |
+
ih, iw = shape
|
56 |
+
masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw) # CHW
|
57 |
+
|
58 |
+
downsampled_bboxes = bboxes.clone()
|
59 |
+
downsampled_bboxes[:, 0] *= mw / iw
|
60 |
+
downsampled_bboxes[:, 2] *= mw / iw
|
61 |
+
downsampled_bboxes[:, 3] *= mh / ih
|
62 |
+
downsampled_bboxes[:, 1] *= mh / ih
|
63 |
+
|
64 |
+
masks = crop_mask(masks, downsampled_bboxes) # CHW
|
65 |
+
if upsample:
|
66 |
+
masks = F.interpolate(masks[None], shape, mode='bilinear', align_corners=False)[0] # CHW
|
67 |
+
return masks.gt_(0.5)
|
68 |
+
|
69 |
+
|
70 |
+
def scale_image(im1_shape, masks, im0_shape, ratio_pad=None):
|
71 |
+
"""
|
72 |
+
img1_shape: model input shape, [h, w]
|
73 |
+
img0_shape: origin pic shape, [h, w, 3]
|
74 |
+
masks: [h, w, num]
|
75 |
+
"""
|
76 |
+
# Rescale coordinates (xyxy) from im1_shape to im0_shape
|
77 |
+
if ratio_pad is None: # calculate from im0_shape
|
78 |
+
gain = min(im1_shape[0] / im0_shape[0], im1_shape[1] / im0_shape[1]) # gain = old / new
|
79 |
+
pad = (im1_shape[1] - im0_shape[1] * gain) / 2, (im1_shape[0] - im0_shape[0] * gain) / 2 # wh padding
|
80 |
+
else:
|
81 |
+
pad = ratio_pad[1]
|
82 |
+
top, left = int(pad[1]), int(pad[0]) # y, x
|
83 |
+
bottom, right = int(im1_shape[0] - pad[1]), int(im1_shape[1] - pad[0])
|
84 |
+
|
85 |
+
if len(masks.shape) < 2:
|
86 |
+
raise ValueError(f'"len of masks shape" should be 2 or 3, but got {len(masks.shape)}')
|
87 |
+
masks = masks[top:bottom, left:right]
|
88 |
+
# masks = masks.permute(2, 0, 1).contiguous()
|
89 |
+
# masks = F.interpolate(masks[None], im0_shape[:2], mode='bilinear', align_corners=False)[0]
|
90 |
+
# masks = masks.permute(1, 2, 0).contiguous()
|
91 |
+
masks = cv2.resize(masks, (im0_shape[1], im0_shape[0]))
|
92 |
+
|
93 |
+
if len(masks.shape) == 2:
|
94 |
+
masks = masks[:, :, None]
|
95 |
+
return masks
|
96 |
+
|
97 |
+
|
98 |
+
def mask_iou(mask1, mask2, eps=1e-7):
|
99 |
+
"""
|
100 |
+
mask1: [N, n] m1 means number of predicted objects
|
101 |
+
mask2: [M, n] m2 means number of gt objects
|
102 |
+
Note: n means image_w x image_h
|
103 |
+
|
104 |
+
return: masks iou, [N, M]
|
105 |
+
"""
|
106 |
+
intersection = torch.matmul(mask1, mask2.t()).clamp(0)
|
107 |
+
union = (mask1.sum(1)[:, None] + mask2.sum(1)[None]) - intersection # (area1 + area2) - intersection
|
108 |
+
return intersection / (union + eps)
|
109 |
+
|
110 |
+
|
111 |
+
def masks_iou(mask1, mask2, eps=1e-7):
|
112 |
+
"""
|
113 |
+
mask1: [N, n] m1 means number of predicted objects
|
114 |
+
mask2: [N, n] m2 means number of gt objects
|
115 |
+
Note: n means image_w x image_h
|
116 |
+
|
117 |
+
return: masks iou, (N, )
|
118 |
+
"""
|
119 |
+
intersection = (mask1 * mask2).sum(1).clamp(0) # (N, )
|
120 |
+
union = (mask1.sum(1) + mask2.sum(1))[None] - intersection # (area1 + area2) - intersection
|
121 |
+
return intersection / (union + eps)
|
122 |
+
|
123 |
+
|
124 |
+
def masks2segments(masks, strategy='largest'):
|
125 |
+
# Convert masks(n,160,160) into segments(n,xy)
|
126 |
+
segments = []
|
127 |
+
for x in masks.int().cpu().numpy().astype('uint8'):
|
128 |
+
c = cv2.findContours(x, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[0]
|
129 |
+
if c:
|
130 |
+
if strategy == 'concat': # concatenate all segments
|
131 |
+
c = np.concatenate([x.reshape(-1, 2) for x in c])
|
132 |
+
elif strategy == 'largest': # select largest segment
|
133 |
+
c = np.array(c[np.array([len(x) for x in c]).argmax()]).reshape(-1, 2)
|
134 |
+
else:
|
135 |
+
c = np.zeros((0, 2)) # no segments found
|
136 |
+
segments.append(c.astype('float32'))
|
137 |
+
return segments
|